21 research outputs found

    Spectromicroscopy Studies of Silicon Nanowires Array Covered by Tin Oxide Layers

    Get PDF
    The composition and atomic and electronic structure of a silicon nanowire (SiNW) array coated with tin oxide are studied at the spectromicroscopic level. SiNWs are covered from top to down with a wide bandgap tin oxide layer using a metal–organic chemical vapor deposition technique. Results obtained via scanning electron microscopy and X-ray diffraction showed that tin-oxide nanocrystals, 20 nm in size, form a continuous and highly developed surface with a complex phase composition responsible for the observed electronic structure transformation. The “one spot” combination, containing a chemically sensitive morphology and spectroscopic data, is examined via photoemission electron microscopy in the X-ray absorption near-edge structure spectroscopy (XANES) mode. The observed spectromicroscopy results showed that the entire SiNW surface is covered with a tin(IV) oxide layer and traces of tin(II) oxide and metallic tin phases. The deviation from stoichiometric SnO2 leads to the formation of the density of states sub-band in the atop tin oxide layer bandgap close to the bottom of the SnO2 conduction band. These observations open up the possibility of the precise surface electronic structures estimation using photo-electron microscopy in XANES mode

    XPS investigations of MOCVD tin oxide thin layers on Si nanowires array

    Get PDF
    Tin oxide thin layers were grown by metal-organic chemical vapor deposition technique on the top-down nanostructured silicon nanowires array obtained by metal-assisted wet-chemical technique from single crystalline silicon wafers. The composition of the formed layers were studied by high-resolution X-ray photoelectron spectroscopy of tin (Sn 3d) and oxygen (O 1 s) atoms core levels. The ion beam etching was applied to study the layers depth composition profiles. The composition studies of grown tin oxide layers is shown that the surface of layers contains tin dioxide, but the deeper part contains intermediate tin dioxide and metallic tin phases

    Optical Properties of Silicon Nanowires Fabricated by Environment-Friendly Chemistry

    Get PDF
    Silicon nanowires (SiNWs) were fabricated by metal-assisted chemical etching (MACE) where hydrofluoric acid (HF), which is typically used in this method, was changed into ammonium fluoride (NH4F). The structure and optical properties of the obtained SiNWs were investigated in details. The length of the SiNW arrays is about 2 μm for 5 min of etching, and the mean diameter of the SiNWs is between 50 and 200 nm. The formed SiNWs demonstrate a strong decrease of the total reflectance near 5-15 % in the spectral region λ < 1 μm in comparison to crystalline silicon (c-Si) substrate. The interband photoluminescence (PL) and Raman scattering intensities increase strongly for SiNWs in comparison with the corresponding values of the c-Si substrate. These effects can be interpreted as an increase of the excitation intensity of SiNWs due to the strong light scattering and the partial light localization in an inhomogeneous optical medium. Along with the interband PL was also detected the PL of SiNWs in the spectral region of 500-1100 nm with a maximum at 750 nm, which can be explained by the radiative recombination of excitons in small Si nanocrystals at nanowire sidewalls in terms of a quantum confinement model. So SiNWs, which are fabricated by environment-friendly chemistry, have a great potential for use in photovoltaic and photonics applications

    Spektroskopische Charakterisierung der Wechselwirkungen in Halbleiter-Molekül-Hybriden

    Get PDF
    Die vorliegende Arbeit beschäftigt sich mit der Entwicklung und Evaluierung von Strategien zur Kopplung von FeFe-H2asen Modellsystemen zu der Oberfläche von CdSe Quantenpunkten. Hierbei wurden Modelle aufgezeigt, mit denen die Art der Wechselwirkungen von FeFe-H2ase Modellsystemen mit CdSe Quantenpunkten auf Basis von Emissionslöschexperimenten beschrieben werden können. Weiterhin wurden Methoden bereitgestellt, die Affinität von FeFe-H2ase Modellsystemen zu der Quantenpunktoberfläche mit verschiedenen Kopplungsgruppen zu evaluieren und zu erhöhen. Hierbei bilden insbesondere Modellsysteme mit Carboxyl- und in situ erzeugten Dithiocarbamat-Gruppen die stabilsten Halbleiter-Molekül-Hybride aus. Der erstmalig nachgewiesene schnelle Elektronentransferprozess von heißen und relaxierten Leitungsbandzuständen der CdSe Quantenpunkte zu einem sich in der Nähe zu der Oberfläche befindlichen FeFe-H2ase Modellsystem ohne Kopp-lungsgruppe zeigt, dass große Potenzial dieser Hybride für die photokatalytische Protonenreduktion. Gleichzeitig wird durch den schnellen Rücktransfer und Rekombination der Elektronen mit in Defektstellen gefangenen Löchern ersichtlich, dass Elektronen- und Lochtransferprozesse aufeinander abgestimmt werden müs-sen. Die vorgestellte Möglichkeit, dünne Schichten aus CdSe Quantenpunkten mit dem ursprünglichen Ligandensystem mit FeFe-H2ase Modellsystemen zu funktionalisieren und in photokatalytischen Experimenten erfolgreich einzusetzen, verdeut-licht das Potenzial solcher Systeme für die heterogene photokatalytische Protonenreduktion. Somit bilden die in dieser Arbeit vorgestellten Erkenntnisse die Grundlage für die Entwicklung von stabilen Halbleiter-Molekül-Hybridmaterialien und deren zukünftigen Einsatz in vollständig artifiziellen und kostengünstigen Systemen für die photokatalytische Wasserspaltung

    Ultrafast Electron Transfer from CdSe Quantum Dots to a [FeFe]-Hydrogenase Mimic

    No full text
    The combination of CdSe nanoparticles as photosensitizers and [FeFe]-hydrogenase mimics is known to result in efficient systems for light-driven hydrogen generation. Nevertheless, little is known about the details of the light-induced charge-transfer processes. Here we investigate the timescale of light-induced electron transfer between CdSe quantum dots and a simple [FeFe]-hydrogenase mimic adsorbed on the surface of the quantum dot under non-catalytic conditions. Our time-resolved spectroscopic investigation shows that hot electron transfer on a sub-ps timescale and band-edge electron transfer on a sub-10-ps timescale occurs. Fast recombination is observed in the absence of a sacrificial agent or protons, which under real catalytic conditions would quench remaining holes or could stabilize the charge separation. <br /
    corecore