238 research outputs found

    A look ahead: PET/MR versus PET/CT

    Get PDF
    Introduction: Integration of positron emission tomography (PET) and magnetic resonance (MR) has become a topic of increasing interest to the imaging community over the past two years. Objectives: In this text, the authors attempt to distinguish facts from fiction concerning such integrated systems. Analysis of existing information of combined imaging on existing brain PET/MR systems and imaging experience with PET-computed tomography (CT) is reviewed. Various types of system integration of PET and MR are discussed with completely independent systems on one hand and completely integrated systems with the possibility of simultaneous data acquisition on the other hand. Furthermore, it is discussed, what simultaneous data acquisition with nuclear imaging systems combined with MR or CT really means, as technical simultaneity may not be relevant in light of the pharmacokinetics of the nuclear tracers used. Discussion: The authors conclude that combining PET/MR is an interesting research endeavor with uncertain outcome. They argue that, while completely simultaneous brain applications are of research interest immediately, clinical applications do not currently warrant the construction of fully integrated systems. Systems adjacent to each other, where imaging tables are linked with a patient "shuttle” thereby requiring only patient translation but no repositioning, may be a good start to assess the value of integrated PET/M

    Self-Guided Multiple Instance Learning for Weakly Supervised Disease Classification and Localization in Chest Radiographs

    Full text link
    The lack of fine-grained annotations hinders the deployment of automated diagnosis systems, which require human-interpretable justification for their decision process. In this paper, we address the problem of weakly supervised identification and localization of abnormalities in chest radiographs. To that end, we introduce a novel loss function for training convolutional neural networks increasing the \emph{localization confidence} and assisting the overall \emph{disease identification}. The loss leverages both image- and patch-level predictions to generate auxiliary supervision. Rather than forming strictly binary from the predictions as done in previous loss formulations, we create targets in a more customized manner, which allows the loss to account for possible misclassification. We show that the supervision provided within the proposed learning scheme leads to better performance and more precise predictions on prevalent datasets for multiple-instance learning as well as on the NIH~ChestX-Ray14 benchmark for disease recognition than previously used losses

    Self-Guided Multiple Instance Learning for Weakly Supervised Thoracic DiseaseClassification and Localizationin Chest Radiographs

    Get PDF
    Due to the high complexity of medical images and the scarcity of trained personnel, most large-scale radiological datasets are lacking fine-grained annotations and are often only described on image-level. These shortcomings hinder the deployment of automated diagnosis systems, which require human-interpretable justification for their decision process. In this paper, we address the problem of weakly supervised identification and localization of abnormalities in chest radiographs in a multiple-instance learning setting. To that end, we introduce a novel loss function for training convolutional neural networks increasing the localization confidence and assisting the overall disease identification. The loss leverages both image-and patch-level predictions to generate auxiliary supervision and enables specific training at patch-level. Rather than forming strictly binary from the predictions as done in previous loss formulations, we create targets in a more customized manner. This way, the loss accounts for possible misclassification of less certain instances. We show that the supervision provided within the proposed learning scheme leads to better performance and more precise predictions on prevalent datasets for multiple-instance learning as well as on the NIH ChestX-Ray14 benchmark for disease recognition than previously used losses

    'A net for everyone': fully personalized and unsupervised neural networks trained with longitudinal data from a single patient

    Full text link
    With the rise in importance of personalized medicine, we trained personalized neural networks to detect tumor progression in longitudinal datasets. The model was evaluated on two datasets with a total of 64 scans from 32 patients diagnosed with glioblastoma multiforme (GBM). Contrast-enhanced T1w sequences of brain magnetic resonance imaging (MRI) images were used in this study. For each patient, we trained their own neural network using just two images from different timepoints. Our approach uses a Wasserstein-GAN (generative adversarial network), an unsupervised network architecture, to map the differences between the two images. Using this map, the change in tumor volume can be evaluated. Due to the combination of data augmentation and the network architecture, co-registration of the two images is not needed. Furthermore, we do not rely on any additional training data, (manual) annotations or pre-training neural networks. The model received an AUC-score of 0.87 for tumor change. We also introduced a modified RANO criteria, for which an accuracy of 66% can be achieved. We show that using data from just one patient can be used to train deep neural networks to monitor tumor change

    Prediction of low-keV monochromatic images from polyenergetic CT scans for improved automatic detection of pulmonary embolism

    Get PDF
    Detector-based spectral computed tomography is a recent dual-energy CT (DECT) technology that offers the possibility of obtaining spectral information. From this spectral data, different types of images can be derived, amongst others virtual monoenergetic (monoE) images. MonoE images potentially exhibit decreased artifacts, improve contrast, and overall contain lower noise values, making them ideal candidates for better delineation and thus improved diagnostic accuracy of vascular abnormalities. In this paper, we are training convolutional neural networks~(CNN) that can emulate the generation of monoE images from conventional single energy CT acquisitions. For this task, we investigate several commonly used image-translation methods. We demonstrate that these methods while creating visually similar outputs, lead to a poorer performance when used for automatic classification of pulmonary embolism (PE). We expand on these methods through the use of a multi-task optimization approach, under which the networks achieve improved classification as well as generation results, as reflected by PSNR and SSIM scores. Further, evaluating our proposed framework on a subset of the RSNA-PE challenge data set shows that we are able to improve the Area under the Receiver Operating Characteristic curve (AuROC) in comparison to a na\"ive classification approach from 0.8142 to 0.8420.Comment: 4 pages, ISBI 202

    Revealing Hidden Potentials of the q-Space Signal in Breast Cancer

    Full text link
    Mammography screening for early detection of breast lesions currently suffers from high amounts of false positive findings, which result in unnecessary invasive biopsies. Diffusion-weighted MR images (DWI) can help to reduce many of these false-positive findings prior to biopsy. Current approaches estimate tissue properties by means of quantitative parameters taken from generative, biophysical models fit to the q-space encoded signal under certain assumptions regarding noise and spatial homogeneity. This process is prone to fitting instability and partial information loss due to model simplicity. We reveal unexplored potentials of the signal by integrating all data processing components into a convolutional neural network (CNN) architecture that is designed to propagate clinical target information down to the raw input images. This approach enables simultaneous and target-specific optimization of image normalization, signal exploitation, global representation learning and classification. Using a multicentric data set of 222 patients, we demonstrate that our approach significantly improves clinical decision making with respect to the current state of the art.Comment: Accepted conference paper at MICCAI 201
    • …
    corecore