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Abstract. The lack of fine-grained annotations hinders the deployment
of automated diagnosis systems, which require human-interpretable jus-
tification for their decision process. In this paper, we address the problem
of weakly supervised identification and localization of abnormalities in
chest radiographs. To that end, we introduce a novel loss function for
training convolutional neural networks increasing the localization confi-
dence and assisting the overall disease identification. The loss leverages
both image- and patch-level predictions to generate auxiliary supervi-
sion. Rather than forming strictly binary from the predictions as done in
previous loss formulations, we create targets in a more customized man-
ner, which allows the loss to account for possible misclassification. We
show that the supervision provided within the proposed learning scheme
leads to better performance and more precise predictions on prevalent
datasets for multiple-instance learning as well as on the NIH ChestX-
Ray14 benchmark for disease recognition than previously used losses.

1 Introduction

With millions of annually captured images, chest radiographs (CXR) are one
of the most common tools assisting radiologists in the diagnosing process [1].
The emergence of sizeable CXR datasets such as Open-I or ChestX-ray14 [2–6],
allowed deep Convolutional Neural Networks (CNN ) to aid the analysis for the
detection of pulmonary anomalies [6–24]. Despite the success of deep learning,
inferring the correct abnormality location from the network’s decision remains
challenging. While for supervised tasks, this is achieved through algorithms such
as Faster R-CNN [25–27], the necessary amount of fine-grained annotation for
CXR images to train these models is vastly missing and expensive to obtain. In-
stead, models are trained using image-level labels parsed from medical reports,
which might be inaccurate [5]. As such, the problem of pulmonary pathology
identification and localization is at best weakly supervised.
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Fig. 1. In our framework, the network reads chest X-ray images and produces overall
image-level pathology prediction scores and their corresponding locations.

Existing work for weakly-supervised pathology localization in CXR builds ei-
ther upon network saliency or Multiple-Instance Learning (MIL). Saliency-based
methods [6–13] focus primarily on the multi-class recognition task and predict
locations implicitly through saliency visualization methods such as CAM, Grad-
CAM, or excitation backpropagation [28–30]. These methods employ global aver-
age pooling to merge spatial features during the classification process. However,
through this process the CNN makes less indicative decisions, as healthy regions
are heavily outweighing the few regions of interest containing the abnormality.
The other direction combines Fully Convolutional Networks (FCN ) with MIL
to implicitly learn patch-level predictions used for localization [20–23]. In MIL-
based methods, the input data is regarded as a bag of instances where the label
is only available on bag-level. The bag will be assigned a positive label if and
only if there exists at least one positive instance. This problem formulation fits
for diagnosis in medical images as small regions might define the existence of a
pathology within the overall image.

In this paper, we focus on MIL-based approaches to diagnose and localize
pulmonary abnormalities in CXRs. Much MIL-related work investigated the use
of different pooling functions resembling a max-function to aggregate either pre-
dictions or embeddings [6,31–37]. By balancing all given outputs, networks learn
implicitly from the bag label. We argue that this approach overlooks the explicit
use of instance-level predictions into training. We present a novel loss formu-
lation split into two stages. While the first stage leads through conventional
bag-level classification, the second stage leads to more definitive predictions by
generating auxiliary supervision from instance-level predictions. By segregating
the prediction maps into foreground, background, and ambiguous regions, the
network can provide itself instance-wise targets with differing levels of certainty.

The main contributions of our study can be summarized as follows: We pro-
vide a novel loss function that applies prediction maps for self-guidance to achieve
better classification and localization performance without the necessity to ex-
pand a given fully convolutional network architecture. We present the effect of
this loss on MIL-specific datasets as well as the ChestX-Ray14 benchmark. The
experiments demonstrate competitive results with the current state-of-the-art
for weakly supervised pathology classification and localization in CXRs.
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2 Related Work

Automated Chest Radiograph Diagnosis. With the release of large-scale
CXR datasets [2–6] the development of deep learning-based automated diagnosis
methods made noticeable progress in both abnormality identification [6–24,38–
40] and the subsequent step of report generation [17, 19, 41]. However, despite
CNNs, at times, surpassing the accuracy of radiologists in detecting pulmonary
diseases [11,14], inferring the correct pathology location remains a challenge due
to the lack of concretely annotated data. Initial work such as done by Wang et
al. [6] or Rajpurkar et al. [11] uses CAM [28] to obtain pathology locations. Due
to the effectiveness and ease of use, saliency-based methods like CAM became
a go-to method for showcasing predicted disease regions [6, 11–14, 37]. As such,
there exists work to improve CAM visualizations through the use of auxiliary
modules or iterative training [42–44].

Alternatively, Li et al. [21] propose a slightly modified FCN trained in MIL-
fashion to address the problem. Here, each image patch is assigned a likelihood of
belonging to a specific pathology. These likelihood-scores are aggregated using a
noisy-OR pooling for the means of computing the loss. This approach is extended
by Yao et al. [39] and Liu et al. [22] who while using different architecture or
preprocessing methods stick with the same MIL-based training regime. Similarly,
Rozenberg et al. [23] expand Li et al. ’s approach through the usage of further
postprocessing steps such as the integration of CRFs.

All of these methods approach this task through image-level supervision and
try to gain improved localization through changes in architecture, iterative train-
ing or postprocessing. In contrast, rather than modifying a given architecture,
we leverage network predictions within the same training step to achieve more
confident localization.

Multiple Instance Learning. MIL has become a widely adopted category
within weakly supervised learning. It was first proposed for drug activity predic-
tion [45] and has since found a use for applications such as sound [34,35,46] and
video event tagging [33] as well as weakly supervised object detection [47–49].
While max- and mean- pooling have been common choices for deep MIL net-
works, recent work investigates the use of the pooling function to combine in-
stance embeddings or predictions to deliver a bag-level prediction [32–36, 39].
The choice of pooling function will often resemble the max-operator or an ap-
proximation of such to stay in line with common MIL-assumptions. Static func-
tions such as Noisy-OR, Log-Sum-Exp or Softmax [6,21,34] along with learnable
ones like adaptive generalized mean, auto-pooling or attention have been pro-
posed [32–34]. While the choice of pooling function is a vital part of the overall
inference and loss computation in training step in MIL, it in itself does not pro-
vide sufficient information as the optimization will still occur only based on the
bag-level prediction. In order to accurately impact the training, instance-level
predictions are necessary to influence the loss. There exist few methods that
leverage the use of artificial supervision within a MIL setting to train the net-
work additionally through instance-level losses [33, 50–52]. One direction is to
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introduce artificial instance-labels for prediction scores above a specified thresh-
old [33,51,52]. The loss function splits into a bag-level loss acting in standard MIL
fashion by aggregating the predictions and an instance-level prediction where the
network gains pixel-wise supervision based on a set prediction threshold [33].
While this approach provides supervision for each instance, it is heavily depend-
ing on the initialization potentially introducing a negative bias. On the other
side, Morfi et al. [50] introduce the MMM loss for audio event detection. This
loss provides direct supervision for the extreme values of the bag, whereas the
overall bag accumulated using a mean pooling for a bag-level prediction. De-
spite all instances influencing the optimization, the supervision of this method is
limited as it disregards the association for probable positive/negative instances.

In an ideal scenario, each positive instance should have a near maximal
prediction whereas negative ones should be minimal. However, often, the case
presents where the amount of positive bags will sway a classifier towards a biased
prediction due to class imbalance. This might lead to all instances within a bag
for a certain class to get either high or low prediction scores making strict thresh-
olding difficult to apply. Furthermore, as long as the prediction value distribution
within a bag is not separable but rather clumped or uniform existing methods
cannot account for a fitting expansion of the decision boundary. In contrast, we
adopt instance-level supervision in an adapting way, where the distinctness of
the prediction directly defines the influence of the loss.

3 Methodology

We start this section by defining multiple-instance learning. We, then, introduce
our proposed Self-Guiding Loss (SGL) and how it differs from existing losses.
Lastly, we address the use of SGL for classification and weakly supervised local-
ization of CXR pathologies in a MIL setting.

3.1 Preliminaries of Multiple-Instance Learning

Assume, we are given a set of bag-of-instances of size N with the associated
labels B = {(B1, y1), . . . , (BN , yN )}. Let Bi, i = {1, . . . , N} be the i-th bag-of-
instances and Bi,j ∈ Bi, j ∈ {1, . . . , Ni} be the j-th instance with Ni being the
number of instances of the i-th bag. The associated labels yi ∈ {0, 1}C describe
the presence or absence of classes, which can occur independently of each other.
Let c ∈ {1, . . . , C} describe a certain class out of C classes in total. The label
of a bag and an instance for a specific class c is thus shown by yci ∈ {0, 1} and
yci,j ∈ {0, 1}, respectively. We refer to a target of 1 as positive and 0 as negative.
The MIL-assumption requires that yci = 1 if and only if there exists at least a
single positive instance, hence we can define

yci = max
j
yci,j . (1)

Note that while the bag-level annotation yci is available within the training data,
the instance-level annotation yci,j is unknown.
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Fig. 2. Illustration of supervision for different loss function concepts for MIL. Strict
bag-level supervision (left) provided, Zhou et al. ’s BIL [33] (center left), Morfi et al.
’s MMM [50] (center right) and on the right our proposed SGL.

We aim at learning a classifier to predict the likelihood of each instance in
regard to each class within a bag-of-instances. In several works for deep MIL,
this classifier might consist of a convolutional backbone Ψ linked with a pooling
layer Φ to combine predictions or features. The class-wise likelihood of a single
instance is denoted by pci,j(Bi,j) ∈ [0, 1] with

pci (Bi) = {pci,1(Bi,1), pci,2(Bi,2), . . . , pci,Ni
(Bi,Ni

)} = Ψc(Bi) (2)

being the set of all instance-level predictions for class c of the i-th bag. These
instance-level predictions are aggregated using a pooling layer to obtain bag-level
predictions

pci (Bi) = Φc(p
c
i (Bi)) (3)

with pci (Bi) ∈ [0, 1]. For brevity, we omit the arguments of the presented func-
tions from this point on.

3.2 Self-Guiding Loss

The SGL is designed to address the MIL-setting. Here, one faces an inherent
lack of knowledge of the correct instance labels joined with an imbalance between
positive and negative instances. Commonly used MIL approaches merge instance
predictions and train entirely by optimizing any loss function using the bag’s
label y and the bag prediction p. This level of supervision is illustrated on the
left in Fig 2. The bag label is presented in the top row, while the types of instance
supervision are displayed in the bottom. Numbers designate the target label
whereas “-” denotes no existing supervision for that particular instance. While
this level of supervision will lead the network to accurate bag-level predictions,
inferring the determining instance is not ensured.

Rather than just utilizing the bag, our loss formulation is split in two parts.
The first part defines the bag-level loss, while the second part describes how the
network’s predictions induce artificial supervision to train the network.
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Bag-Level Loss. The bag-level loss behaves as in classic MIL approaches.
A bag-level prediction is generated by aggregating the network’s instance-level
predictions. We calculate the loss of this stage using common loss functions L
such as the binary cross-entropy by passing the prediction and target for all
classes and bags as follows:

LBag(B, y) =
1

C ·N
∑
c

∑
i

L(pci , yi) (4)

with i ∈ {1, . . . , N} and c ∈ {1, . . . , C}. This loss is, hereby, depending on the
choice of the pooling function Φ and provides leeway for the instance-level loss
to step in.

Instance-Level Loss. To outline the instance-level loss, we start with the
assumption that a network trained just from bag labels will inevitably assign
some positive instances a noticeably higher prediction score than most negative
instances. From this, we derive three types of instance predictions. Instances
with a high score are likely to be considered positive, whereas instances with a
low score as negative. Instances with scores close to the decision boundary are
rather ambiguous as they may easily be swayed in the course of training and
as such do not pose an as concrete implication about the actual class of the
instance. Pursuing this line of thought we establish three types of supervision
based on the certainty level of each prediction within a bag.

Our first step is to normalize the prediction set using the common min-max
feature scaling. We apply this to avoid cases of biases stemming from either
algorithmic decisions such the choice of the pooling function or general data
imbalance. We denote the resulting rescaled bag of predictions θ by

θcij =
pcij −min(pci )

max(pci )−min(pci )
(5)

with min and max being functions returning the minimal and maximal values
within a set respectively. The normalized predictions are then used within a
ternary mask M depicting targets stemming from the previously named cases
similar to Hou et al. [53] and Zhang et al. [42]. For this, we define a higher
and lower threshold to partition the prediction set, δh and δl respectively with
δh + δl = 1 and δh ≥ δl ≥ 0. Everything larger than the upper threshold δh will
be regarded as a positive instance and all instances with scores lower than δl as
negative. The target mask M is then defined for each instance j in the bag i for
class c by

M c
i,j =


0 , if θci,j < δl or yci = 0

θci,j , if δl ≤ θci,j ≤ δh
1 , if δh < θci,j

. (6)

For distinctly positive and negative predictions, we obtain instance-wise super-
vision with a target value of 1 and 0 respectively. We can also presume based on
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Eq. 1. that each instance within negative bags is also negative. Thus, we can set
all values of their masks to 0. The remaining uncertain regions, however, do not
allow for as explicit label assignment. While we want to enforce the networks
decision process, we also have to account for possible missassignment. Thus,
rather than setting a fixed target value, we set the target to be θ. This process
shows some similarity to the popular label smoothing procedure [54]. Rather
than using maximal valued targets, the maps adjusted value is inserted into the
loss function as target value. This slightly pushes the loss into the direction of
the most extreme predictions within the uncertain instance set. By doing so we
steadily increase the amount distinctly positive and negative predictions over
the course of training.

We can construct the loss using a fundamental loss function L like binary
cross entropy by utilizing M as target. The instance-level loss is then defined as

LInst(B,M) =
∑
i

∑
c

∑
j

2α
c
i−1 · L(pci,j ,M

c
i,j), (7)

where each part is being normalized by the number of pixels with the respective
supervision types. This way, we strengthen the networks decision process for its
more certain instances. We, further, consider a weighing factor α to influence
the bag’s impact based on the overall certainty of its prediction. We define α by

αci = max(max(pci )−median(pci )), 1− yi) (8)

Since a positive bag in a common MIL setting should have a low valued median
due to a limited amount of positive instances, it is weighted highly if the network
is able to clearly separate positive from negative predictions. Thus, for positive
bags, α = 0 if all predictions result in the same value and α = 1 if the network
is able to clearly separate positive from negative instances under the assump-
tion that the number of positive instances is vastly smaller than the number of
negative ones. For negative bags, α = 1 holds due to the given supervision.

The complete loss is then defined by

LSGL(pi, yi) = LBag + λ · LInst, (9)

with λ denoting the weighing hyperparameter of the instance-level loss.
An example of the final supervision for our loss is displayed in Fig 2. The

standard approach on the left uses no instance-level supervision. In the center
left, Zhou et al. ’s BIL provides a positive label for each instance above the 0.5
threshold and a negative else, while maintaining the bag supervision. The MMM
loss by Morfi et al. , in the center right, considers positive labels for the maximum
instances and negative ones for minimal instances. It further uses the target of
0.5 for a mean pooled prediction. Opposed to this, our loss adapts its assumed
supervision to the produced predictions. Rather than just using the maximum
or applying set thresholding, we threshold on a rescaled set of predictions, thus
avoiding a common problem occurring with imbalanced data. Our formulation
incorporates all instance predictions while providing a margin of error based on
the networks certainty over the smoothed targets θ and the weighing factor α.
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Fig. 3. Overview of considered framework for thoracic disease identification and local-
ization. A chest X-ray is passed through an FCN and produces a prediction map. The
prediction map is used to compute the instance- and bag-level losses.

3.3 MIL for Chest Radiograph Diagnosis

We consider a MIL scenario for CXR diagnosis. We build upon the assumption
that singular patches (instances) of an image (bag-of-instances) can infer the
occurrence of such a pathology (class). An example of this is the class “nodules”,
which can take up minimal space within the image. We are given just image-level
labels for pathologies, while more detailed information such as bounding box or
pixel-level supervision remains hidden. The bag is associated with a class if and
only if there exists at least one instance causing such implication. The goal is
to learn a model that when given a bag of instances can predict the bag’s label
based on the instance information. By classifying the bag’s instances the model
provides insight regarding which regions are affected by a pathology.

Overview. In Figure 3, we illustrate an overview of the considered scheme for
CXR diagnosis. Firstly, an FCN processes CXR-images, which results in patch-
wise classification scores for each abnormality. The number of patches stems
from their perceptual field, which is a result of backbone architecture. Each
patch is independently processed via a 1 × 1 convolutional classification layer.
In this work, we do not add specific modules to our backbone network. These
patch predictions are aggregated in the second part using a pooling layer, which
produces a bag-level prediction for our bag-level loss. The third part applies
an instance-level loss function based on the patch-wise predictions. In the fourth
part, both the instance and bag-level losses join for optimization. Here, we further
penalize the occurrence of non-zero elements in M using an L2-Norm.

Choice of Pooling Function. The choice of the correct pooling function is
vital for any MIL-setting to produce accurate bag-level predictions. Methods
like max and mean pooling will lead to imprecise decisions. In the context of
MIL in CXR diagnosis, Noisy-OR found use, but this function suffers from the
numerical instability stemming from the product of a multitude of instances.
Rather than letting singular instances influence the decision process, we choose
to employ the Softmax-pooling, which has found success in audio event detec-
tion [34,35]. It provides a meaningful balance between instance-level predictions
to let each instance influence the bag level loss based on its intensity.
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4 Experiments

4.1 Datasets

MNIST-Bags. In a similar fashion to Ilse et al. [32], we use the MNIST-
bags [32,55] dataset to evaluate our method for a MIL-setting. A bag is created
grayscale MNIST-images of size 28× 28, which are resized to 32× 32. A bag is
considered positive if it contains the label “9”. The number of images in a bag is
Gaussian-distributed based on a fixed bag size. We investigate different average
bag sizes and amounts of training bags. During evaluation 1000 bags created
from the MNIST test set of the same bag size as used in training. We average
the results of ten training procedures.1

CIFAR10-Bags. We build CIFAR10-bags from CIFAR10 [56] in a similar fash-
ion to MNIST-bags. We choose to create 2500 and 5000 training and test bags
respectively with fixed bag sizes. A bag here is considered positive if it contains
the label “dog”. We investigate in these experiments the influence of a varying
number of positive instances per bag. We average five training runs.
NIH ChestX-ray14. To present the effect of our loss for medical diagnosis, we
conduct experiments on the NIH ChestX-ray14 dataset [6]. It contains 112,120
frontal-view chest X-rays taken from 30,805 patients with 14 disease labels.
Unless further specified, we resize the original image size of 1024 × 1024 to
512× 512. We use the official split between train/val and test, as such we get a
70%/10%/20% split. Also, 880 images with a total of 984 images with bounding
boxes for 8 of the 14 pathologies from the test set.

4.2 Implementation Details

For all MNIST-Bags-experiments, we use a LeNet5 model [55] as Ilse et al.
[32]. We apply max-pooling, δl = 0.3 and λ = 1 for our method unless further
specified. We train BIL [33] using mean-pooling as we found it unable to train
with max-pooling.

For all CIFAR10-bags-experiments, we train a ResNet-18 [57] with the same
optimizer hyperparameters and batchsize of 64 for 50 epochs. We apply max-
pooling, δl = 0.3 and λ = 1 for our method.

For the experiments on NIH ChestX-ray14, each network is initialized using
an Image-Net pretraining. We use the same base model as Wang et al. [6]
by employing a ResNet-50 [57]. We replace the final fully connected and pooling
layers with a convolutional layer of kernel size 1×1, resulting in the same number
of parameters as Wang et al. We follow standard image normalization [58]. For
training, we randomly crop the images to size 7/8-th of the input image size,
whereas we use the full image size during test time. We train the network for
20 epochs using the maximum batch-size for our GPU using Adam [59] with a
learning rate, weight decay, β1 and β2 of 10−4, 10−4, 0.9 and 0.999 respectively.
We decay the learning rate by 0.1 every 10 epochs. We set δ = 0.3 and λ =

1 www.github.com/ConstantinSeibold/SGL

www.github.com/ConstantinSeibold/SGL
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Fig. 4. Test AUC and IoU for MNIST-Bags for differing avg. instances per bag.

20. We increase λ to keep the two losses on similar magnitudes. The model is
implemented using Pytorch [60].

4.3 Evaluation Metrics

We evaluate the classification ability of our network via the area under the ROC-
curve (AUC ). To evaluate the localization ability we apply average intersection-
over-union (IoU ) to calculate the class-wise localization accuracy similar to Rus-
sakovsky et al. [58]. To compute the localization scores, we threshold the prob-
ability map at the scalar value Tp to get the predicted area and compute the
intersection between predicted and ground truth area to compute the IoU. In the
case of MNIST- and CIFAR10-bags IoU is computed as the intersection between
predicted positive instances and ground truth positive instances at Tp = 0.5.

The localization accuracy is calculated by #hit
#hit+#miss , where an image has the

correct predicted localization (hit) iff it has the correct class prediction and a
higher overlap than a predefined threshold TIoU .

4.4 Results

MNIST-Bags. The AUC and IoU results for the mean bag sizes of 10, 50,
and 100 with a varying number of given training bags are displayed from left
to right in the top and bottom row of Fig. 4. We present the average of the
runs as well as the best and worst runs for each method. For small bags, our
method performs similarly to the simple max-pooling in both AUC and IoU. We
attribute this average performance to the small number of instances in a bag,
which does not allow to make proper use of our ternary training approach. As
we increase the bag size to 50 and 100 our proposed loss performs better than
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(a) (b)
Fig. 5. Ablation study of SGL in Figure (a). Figure (b) displays exemplary positive
bags of size 10 for MNIST-bags (top) and CIFAR10-bags (bottom). Positive instances
denoted in green, negative ones in red.

the max-pooling baseline but also than the other methods for both metrics. We
can see the difference notably in the IoU, where our loss achieves nearly double
the performance of the next best method for almost all amounts of training
bags. We notice that our approach does not pose a trade-off between confident
predictions and overall AUC but manages to facilitate a training environment
which improves both metrics. It is also worth mentioning that while increasing
the amount of training bags improves the method for any bag size our loss
achieves exceptional performance for both AUC and IoU with a relatively small
number training examples for larger bag sizes. We can reason that the further
use of self-guidance can potentially improve a method regardless of dataset size.

In Fig. 5 (a), we present ablation studies involving different constellations of
the loss. When considering the loss components, we start with just max-pooling
baseline and successively add parts of SGL. Max-pooling alone struggles with
the identification of positive/negative bags, however, improves slowly in terms of
IoU and AUC with increasing numbers of training bags. When adding the pro-
posed loss without the rescaling mentioned in Eq. 3.2 and weighting component
(shown by Inst.(No Rescale)) the method becomes incapable to learn as even
random initializations might skew the network towards incorrect conclusions.
When adding the rescaling component (shown by Inst.) the model drastically
outperforms prior parts in both metrics. Doing so achieves higher maximums
than with the applied weighting factor α displayed by Inst.+Weight. However,
the addition of the weighting factor provides a more stable training, specifically
for smaller amounts of training data.
CIFAR10-Bags. The AUC and IoU results for the mean bag sizes of 50 and
100 with a varying number of positive instances per bag are in the top and
bottom row of Fig. 6. For smaller bag sizes, we observe that straight forward
mean-pooling achieves the best AUC scores for CIFAR10-Bags. Overall SGL im-
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Fig. 6. Test AUC and IoU for CIFAR10-Bags for differing number of average positive
instances per bag with a bag size of 50 and 100.

proves over straight forward max-pooling for any number of instances. In regards
to IoU, our method manages to outperform other methods for nearly any num-
ber of positive instances per bag. For larger bag sizes SGL achieves roughly the
same performance as BIL which trained using mean-pooling in terms of AUC
while outperforming it in IoU for all amounts of positive instances per bag. The
addition of self-guidance manages to bridge shortcomings of max-pooling, boost-
ing its classification accuracy for any bag size or number of positive instances.

NIH ChestX-Ray 14: Multi-Label Pathology Classification. Table 1
shows the AUC scores for all the disease classes. We compare the results of
our loss function with a common classification approach by Wang et al. [6], the
MIL-based methods proposed by Li et al. [21] and Liu et al. [22]. The latter
two employ noteworthy architectural adaptations and train using bounding box

Method
Pathologies

At. Card. Cons. Ed. Eff. Emph. Fib. Hernia Inf. Mass Nod.
Pl.
Th.

Pn. Pt. Mean

Wang et al. 0.70 0.81 0.70 0.81 0.76 0.83 0.79 0.87 0.66 0.69 0.67 0.68 0.66 0.80 0.75

Li et al. * 0.80 0.87 0.80 0.88 0.87 0.91 0.78 0.70 0.70 0.83 0.75 0.79 0.67 0.87 0.81

Liu et al. * 0.79 0.87 0.79 0.91 0.88 0.93 0.80 0.92 0.69 0.81 0.73 0.80 0.75 0.89 0.83

ResNet-50+SGL 0.78 0.88 0.75 0.86 0.84 0.95 0.85 0.94 0.71 0.84 0.81 0.81 0.74 0.90 0.83

Table 1. Comparison of classification performance for CXR pathologies on the NIH
ChestX-Ray14 dataset. Here, 70% of all images were used for training with no bounding
box annotations available. Evaluations were performed on the official test split contain-
ing 20% of all images. “*” denotes usage of additional bounding box supervision.
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TIoU Model Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax Mean

0.1

Wang et al. [6] 0.69 0.94 0.66 0.71 0.40 0.14 0.63 0.38 0.57
Li et al. [21]* 0.71 0.98 0.87 0.92 0.71 0.40 0.60 0.63 0.73
Liu et al. [22] 0.39 0.90 0.65 0.85 0.69 0.38 0.30 0.39 0.60
SGL (Ours) 0.67 0.94 0.67 0.81 0.71 0.41 0.66 0.43 0.66

0.3

Wang et al. [6] 0.24 0.46 0.30 0.28 0.15 0.04 0.17 0.13 0.22
Li et al. [21]* 0.36 0.94 0.56 0.66 0.45 0.17 0.39 0.44 0.50
Liu et al. [22] 0.34 0.71 0.39 0.65 0.48 0.09 0.16 0.20 0.38
SGL (Ours) 0.31 0.76 0.30 0.43 0.34 0.13 0.39 0.18 0.36

0.5

Wang et al. [6] 0.05 0.18 0.11 0.07 0.01 0.01 0.01 0.03 0.06
Li et al. [21]* 0.14 0.84 0.22 0.30 0.22 0.07 0.17 0.19 0.27
Liu et al. [22] 0.19 0.53 0.19 0.47 0.33 0.03 0.08 0.11 0.24
SGL (Ours) 0.07 0.32 0.08 0.19 0.18 0.10 0.12 0.04 0.13

0.7

Wang et al. [6] 0.01 0.03 0.02 0.00 0.00 0.00 0.01 0.02 0.01
Li et al. [21]* 0.04 0.52 0.07 0.09 0.11 0.01 0.05 0.05 0.12
Liu et al. [22] 0.08 0.30 0.09 0.25 0.19 0.01 0.04 0.07 0.13
SGL (Ours) 0.02 0.01 0.1 0.00 0.04 0.00 0.03 0.01 0.01

Table 2. Disease localization accuracy are evaluated with a classification threshold of
0.5. “*” denotes additional bounding box supervision.

supervision. All of the named methods utilize a ResNet-50 as backbone network.
We outperform the baseline ResNet-50 of Wang et al. in all categories. We ob-
serve that our loss formulation achieves better classification performance than
all other methods in 9 of 14 classes in total. We also reach a better mean per-
formance than other methods, which use further bounding box annotations and
architectural modifications such employing additional networks [22] or further
convolutional layer [21,22].

NIH ChestX-Ray 14: Pathology Localization. We evaluate the localization
ability of the prior named methods through the accuracy over an IoU thresh-
old. For our method, we upsample each prediction map using Nearest-Neighbor-
Interpolation. We construct bounding boxes around the connected component of
the maximum prediction after applying common morphological operations. The
results are displayed in Table 2 for the IoU thresholds TIoU ∈ {0.1, 0.3, 0.5, 0.7}.
We, further, display qualitative examples for each pathology in Figure 7. For the
visualization, we use no morphological postprocessing. We compare our method
against a baseline version of our model trained only using the bag-level loss
with a mean-pooling function. The expert annotation is displayed by a green
bounding box, while the predicted one is orange.

Our method achieves favourable performance across all pathologies on a
threshold of TIoU = 0.1. It generally outperforms the baseline of Wang et al.
[6]. For higher thresholds, our model falls behind the more specified approaches
of Li et al. [21] and Liu et al. [22]. We ascribe the suboptimal quantitative per-
formance to the factors of low spatial output resolution, which can hinder passing
the IoU threshold especially for naturally small classes such as Nodules, and the
overall coarse annotation as can be seen in Figure 7 e.g. the pathology Infiltrate.
Here, an infiltrate affects the lung area, which the model correctly marks, yet
the bounding box naturally includes the cardiac area, thus diminishing the IoU.

In Figure 7, we see that our proposed method can generally make more precise
predictions compared to the baseline model. Furthermore, the model can more
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Pneumothorax Pneumonia

Mass Atelectasis

Nodule Infiltrate

Effusion

Input Baseline SGL

Cardiomegaly

Input Baseline SGL
Fig. 7. We compare the patch-wise predictions between a mean-pooling trained base-
line to our proposed method for different diseases. The value ranges from 0 (blue) to
1 (red). We show prediction boxes (orange) around the connected component of the
maximum prediction and Ground-Truth bounding boxes (green).

distinctly separate between healthy and abnormal tissue. These results indicate
the ability of our loss to lead itself towards more refined predictions.

5 Conclusion

In this paper, we propose a novel loss formulation in which one gathers auxiliary
supervision from the network’s predictions to provide instance-level supervision.
In comparison to existing MIL-based loss functions, we do not rely on initial-
ization and still provide pixel-wise supervision driving the network. Due to the
design of this loss, it can support any MIL-setting such as patch-based pathology
diagnosis. We demonstrate our method on two MIL-based datasets as well as the
challenging NIH ChestX-Ray14 dataset. We display promising classification and
localization performance qualitatively and quantitatively.
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