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ABSTRACT

Detector-based spectral computed tomography is a recent
dual-energy CT (DECT) technology that offers the possi-
bility of obtaining spectral information. From this spectral
data, different types of images can be derived, amongst oth-
ers virtual monoenergetic (monoE) images. MonoE images
potentially exhibit decreased artifacts, improve contrast, and
overall contain lower noise values, making them ideal can-
didates for better delineation and thus improved diagnostic
accuracy of vascular abnormalities.

In this paper, we are training convolutional neural net-
works (CNN) that can emulate the generation of monoE
images from conventional single energy CT acquisitions.
For this task, we investigate several commonly used image-
translation methods. We demonstrate that these methods
while creating visually similar outputs, lead to a poorer
performance when used for automatic classification of pul-
monary embolism (PE). We expand on these methods through
the use of a multi-task optimization approach, under which
the networks achieve improved classification as well as gener-
ation results, as reflected by PSNR and SSIM scores. Further,
evaluating our proposed framework on a subset of the RSNA-
PE challenge data set shows that we are able to improve the
Area under the Receiver Operating Characteristic curve (Au-
ROC) in comparison to a naı̈ve classification approach from
0.8142 to 0.8420.

Index Terms— Image-to-Image Translation, Spectral
Computer Tomography, Domain Adaptation, Pulmonary Em-
bolism Diagnosis

1. INTRODUCTION

In spectral computed tomography (DECT), projection data si-
multaneously obtained from both detector layers is utilized to
generate spectral images such as virtual monoenergetic (mo-
noE) scans. Next to the conventional (polyenergetic) images,

∗ denotes equal contribution.

multiple spectrally distinct attenuation maps can be obtained
from a single scan and used to derive different types of im-
ages. The clinical uses of the DECTs can be summarized with
enhanced visualization of intravascular contrast, reduction of
artifacts such as calcium blooming, material decomposition,
and radiation dose reduction [1]. Therefore, in comparison
to conventional CT, DECT compares favorably for the diag-
nosis of various diseases such as myocardial perfusion [2] or
pulmonary embolisms [3].

We argue that similar to the expert radiologist, convolu-
tional neural networks (CNN) may benefit when trained on
DECT data. However, as most currently existing CT data
sets were acquired with conventional CT scanners they do
not comprise monoE images. To bridge this gap, we in-
vestigate the use of existing image-translation models such
as Pix2Pix [4], which might be able to use the underlying
distributions in polyenergetic images to predict spectral im-
ages akin to what was done to translate CT images to MRI
scans [5]. In turn, these generated synthetic monoE images
might be used as input for CNNs potentially facilitating their
detection of pathologies. While existing image-translation
methods are able to generate visually appealing results they
do not enforce features that enable the correct identification of
certain classes. For this reason, we introduce a joint optimiza-
tion between the generation of the monoenergetic domain and
the simultaneous identification of pathologies. This leads to
a network that learns to combine features necessary for a
downstream classification task as well as for synthetic image
generation. In other words, the proposed framework learns a
suitable mapping on the basis of monoenergetic images.

Our contributions can be summarized as (1) an extensive
study comparing various image-translation methods for the
prediction of monoE images from conventional polyenergetic
scans, (2) evaluation of the classification accuracy of pre-
dicted synthetic monoE images for the detection of PE, and
(3) proposal of a training regime, enabling to generate data
that is not only visually similar but also incorporates features
necessary for the automatic identification of pathologies.
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Fig. 1. Overview of the different approaches for the combination of domain adaptation and classification. On the left, a) trains
a generator on the paired dataset, which would be followed by the training of a classifier on annotated data in b). c) displays
our approach of the joint optimization of generator and classifier, where the generator learns the mapping for unlabeled data,
while adjusting its features in a way that it does not hinder the classification network when given annotated data.

2. METHODS AND MATERIALS

Suppose, we are given two distinct data sets D1 and D2. D1

consists of unannotated images with poly- and monoenergetic
depictions. D2 describes a set of images with slice-level dis-
ease annotations without corresponding monoenergetic repre-
sentation. We now aim to design a unified model that jointly
optimizes disease identification and domain adaption most fit-
ting for the task. We have formulated these two tasks into the
same framework so that 1) it trains these tasks end-to-end and
2) the two tasks can be mutually beneficial. The proposed
architecture is displayed in Fig. 1 c).
Methodology: The proposed framework jointly optimizes
two tasks in an end-to-end manner. As one task, we consider
the problem of translating between the domain of polyener-
getic x ∈ X and monoE images y ∈ Y as a paired image-
translation problem. Here, a generator aims to learn a map-
ping G : x→ y, which minimizes the difference between the
two paired images. This objective can be expressed as

LL1 = Ex,y[||G(x)− y||1]. (1)

We utilize the mean absolute error as it has been found to lead
to less blurry images [4].

Consecutively, the output of the generator is fed into a
classification network C, which attempts to predict the occur-
rence of a disease label z,C : G(x)→ z of the annotated data
set. We utilize ResNet50 [6], however our framework can be
easily extended to employ any other existing CNN model. We
utilize a sigmoid activation σ for making output predictions.

Lcls =Ex,z[−z log σ(C(G(x)))
− (1− z) log(1− σ(C(G(x)))]

(2)

To optimize both objectives during the training process, we
construct our data set as a combination of the two data sets
(see below) and sample the batch in a way such that on av-
erage it consists of 50% of either. Therefore, target disease

labels are only given for half of the batch and monoener-
getic target images for the other half. To accommodate this
circumstance into the optimization function we introduce a
marker variable m, which switches between [0, 1] depending
on whether we are presented a target image y or a target label
z. In this manner, the final loss can be formulated as

L = m ∗ Lcls + (1−m) ∗ LL1. (3)

For backpropagation of the gradients one network is frozen,
while the other is updated similar to an adversarial training.
Implementation Details: We train our networks jointly in an
end-to-end manner by sequentially passing data through the
generator and classification network. Our generator network
utilizes a fully convolutional 9-block ResNet encoder-decoder
network, however, similar to our classifier, the model can eas-
ily be replaced by more advanced architectures. We use Adam
for optimization with a learning rate of 0.0002, β1 = 0.9 and
β2 = 0.99 with a weight decay of 0.00001. After training
for 5 epochs on the joint data set, we decay our learning rate
to 0 over the following 5 epochs. We use an image-size of
512× 512 with a batch size of 5 for all our experiments.
Experimental Setup: We utilize two data sets for our ex-
periments. The private dual-energy computed tomography
pulmonary angiography (DE-CTPA) data set D1 was gath-
ered during routine clinical workup of 27 consecutive patients
with suspected pulmonary embolism. The CT scans were per-
formed on a dual-layer detector (IQon Spectral CT, Philips
Healthcare). Standard arterial series and the corresponding
monoenergetic images at low-energy levels (40 keV) were re-
constructed. The data set contains 7892 image pairs.

The second data set D2 is a subset of the RSNA STR Pul-
monary Embolism Detection [7]. Out of the annotated 7279
subjects, we sample 10% of the training data patient-wise.
The sampled data set consists of a total of 161253 annotated
slices with roughly the same label distribution as present in
the open training set. We further split the data patient-wise
50%/25%/25% into train-, val- and test-sets, respectively.
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Fig. 2. Qualitative comparison of different image translation methods on our internal DE-CTPA dataset. Individual SSIM and
PSNR values are shown on the images. Areas around Pulmonary Embolisms are displayed seperately.

For our experiments on our DE-CTPA, we perform 5-
fold cross validation and average our reconstruction results
in terms of Peak-Signal-to-Noise-Ratio (PSNR) and Struc-
tural Similarity Index Measure (SSIM). For the identifica-
tion of PE, we perform binary classification on slice level for
each presented image domain and report the area under the
receiver-operating-characteristic (AuROC) on the test split of
the model which performed best on the validation set. We
validated our model after each epoch.

We compare against various image-translation models
such as an L1-loss-based generator as a baseline, Pix2Pix[4],
Pix2PixHD[8], CRN[9], SPL[10]. We further added L1-
Losses to feature-loss based methods (CRN, Pix2PixHD),
denoted by *. All methods apart from CRN and Pix2PixHD,
which use their originally proposed architecture, are trained
using the same 9-block ResNet architecture. Orig. denotes
the direct usage of conventional CT imagery for either the
computation of PSNR/SSIM or as input into a classification
network. To evaluate classification performance for different
image translation methods, we train all methods on the same
split in the cross validation setting of our internal data set.
Compliance with ethical standards: The first data set was
gathered as part of a retrospective single-centre HIPAA-
compliant study, which was approved by the local institu-
tional review board (No. S-236/2020) with a waiver for
written informed consent. As the second data set is part of
a public competition ethical approval was not required as
confirmed by the license attached with the open access data.
Conflicts of Interest: No funding was received for conduct-
ing this study. The authors have no relevant financial or non-
financial interests to disclose.

Method SSIM PSNR
Orig. 0.945± 0.007 30.189± 0.690

L1 0.984± 0.002 42.365± 0.642
SPL[10] 0.983 ± 0.002 40.888± 0.216

Pix2Pix [4] 0.978± 0.003 40.897± 0.697
Pix2PixHD [8] 0.971± 0.004 38.739± 0.624

CRN [9] 0.371± 0.551 19.482± 16.033

Pix2PixHD* 0.971± 0.004 38.415± 1.278
CRN* 0.976± 0.0045 37.582± 1.574

Ours 0.984± 0.002 41.706± 0.547

Table 1. Reconstruction results of various Image-Translation
methods. Best and second-best result in bold and cursive.

3. RESULTS

Quantative Results of Translation Properties: The quan-
titative results on the reconstruction ability are displayed in
Table 1. Models optimized on image-based comparison out-
perform feature-loss and adversarial methods for the evalu-
ated task. Our method achieves similar performance to the
L1-based generator. All methods apart from the feature loss
based CRN model manage to create high quality visual re-
constructions of the monoE images. Qualitative samples can
be seen in Fig. 2. Areas around pulmonary embolisms are
further highlighted.
Impact on automatic PE diagnosis: The quantitative results
on the classification results of a ResNet50 network trained on
various input image domains are displayed in Table 2. Despite



Domain Orig. L1 SPL Pix2Pix CRN* P2PHD* Ours
AuROC 0.8142 0.8102 0.8061 0.8051 0.8038 0.8019 0.8420

Table 2. Pulmonary Embolism-Classification results of a
ResNet-50 trained on images from different image domains
of various Image-Translation methods. Best result in bold.

the similar SSIM/PSNR results, the L1-loss-based model gen-
erates images, which slightly hamper the classification ability
of a model. The other compared models worsen the perfor-
mance, while our proposed method manages to generate vi-
sually fitting images as well as improves classification results
over the baseline.

4. DISCUSSION

We have investigated the potential use of the prediction of
monoenergetic from polyenergetic images for the automatic
identification of pathologies in CTPAs. We have displayed
that most established image translation method either fail to
correctly reconstruct that domain or are dismissing features
necessary for classification. To offset these shortcomings
of existing approaches we introduce an end-to-end learnable
framework which combines the training of the classification
and translation network. The reconstruction loss terms man-
age to let the network predict the visual properties, while the
classification loss lets it enhance distinguishable features for
the trained task. Results on the RSNA STR Pulmonary Em-
bolism Detection dataset indicate that our approach provides
a successful domain adaptation to monoenergetic imagery as
it outperforms existing image-translation methods for paired
data, while using the same or less parameters.

5. CONCLUSION

The proposed joint optimization strategy allows training of
reconstruction of monoenergetic images without losing fea-
tures necessary for the classification process. Our method,
hereby, improves noticeably over straight forward classifica-
tion, while outperforming existing methods.
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