69 research outputs found

    Benefit of Intravenous Thrombolysis in Acute Ischemic Stroke Patients With High Cerebral Microbleed Burden

    Get PDF
    BACKGROUND AND PURPOSE: Cerebral microbleeds (CMBs) are a risk factor for intracranial hemorrhage. Whether intravenous thrombolysis (IVT) improves functional outcome in acute ischemic stroke patients with CMBs is unknown. We aimed to estimate the treatment effect of IVT in patients with acute ischemic stroke and a high burden (>10) of CMBs. METHODS: We devised a multistep algorithm to model 90-day modified Rankin Scale scores in patients with ≤10 versus >10 CMBs who do or do not receive IVT. Parameters were extracted from recently published meta-analyses and included pairwise relationships between CMBs, IVT, 3-month functional outcome, and intracranial hemorrhage. Uncertainty was quantified in probabilistic sensitivity analyses. RESULTS: In patients with >10 CMBs as compared with ≤10 CMBs, point estimates of the odds ratios for favorable outcome (modified Rankin Scale ≤2) associated with IVT were 7% to 10% lower but still >1 (range, 1.03–1.51). On the other hand, IVT in patients with >10 CMBs significantly increased the odds of mortality. The point estimates for the net treatment effect of IVT (change in the utility-weighted modified Rankin Scale score) in patients with >10 CMBs were in favor of withholding IVT in older patients with more severe strokes and longer treatment delays. However, because the general pretest probability of >10 CMBs is low (0.6%–2.7%), pretreatment magnetic resonance imaging to quantify CMB burden would be justified only if it delayed IVT by <10 minutes. CONCLUSIONS: High CMB burden modifies the treatment effect of IVT. In patients with >10 CMBs, IVT is associated with higher mortality and, in older patients with severe strokes and longer treatment delays, a net utility loss. Patients with higher-than-average pretest probability of >10 CMB might profit from magnetic resonance imaging screening if it does not increase the treatment time

    Histopathologic assessment of neurotoxicity after repeated administration of gadodiamide in healthy rats

    Get PDF

    Gadopentetate but not gadobutrol accumulates in the dentate nucleus of multiple sclerosis patients

    Get PDF
    BACKGROUND: Previous studies have postulated an association between dentate nucleus T1 hyperintensity and multiple sclerosis (MS)-related progressive neurodegeneration. Therefore, MS patients have been excluded from most studies investigating brain deposition of gadolinium-based contrast agents (GBCAs). OBJECTIVE: To study the hypothesis that dentate nucleus T1 hyperintensity in MS patients is associated with GBCA administration. METHODS: In a cohort of 97 MS patients, the dentate-to-pons signal intensity ratio (DPSIR) was calculated for 265 consecutive T1-weighted magnetic resonance (MR) scans (including sessions with and without the administration of GBCA). Patients exclusively received either gadopentetate dimeglumine (Gd-DTPA, linear) or gadobutrol (Gd-BT-DO3A, macrocyclic). RESULTS: In patients receiving Gd-DTPA, DPSIR increased significantly between the first and the last scan (+0.009, p < 0.001), and following magnetic resonance imaging (MRI) with Gd-DTPA administration as compared to following an MRI without Gd-DTPA administration (+0.005 vs -0.001; p = 0.022). Additionally, there was a positive linear relationship between the number of Gd-DTPA administrations and the increase in DPSIR (p = 0.017). No DPSIR increase was observed after Gd-BT-DO3A administration. CONCLUSION: Dentate nucleus T1 hyperintensity in MS patients is associated with Gd-DTPA (but not Gd-BT-DO3A) administration, suggesting an alternative explanation for the association of T1 hyperintensity with disease duration and severity

    The Energetic Particle Detector (EPD) Investigation and the Energetic Ion Spectrometer (EIS) for the Magnetospheric Multiscale (MMS) Mission

    Get PDF
    Abstract The Energetic Particle Detector (EPD) Investigation is one of 5 fields-and-particles investigations on the Magnetospheric Multiscale (MMS) mission. MMS comprises 4 spacecraft flying in close formation in highly elliptical, near-Earth-equatorial orbits targeting understanding of the fundamental physics of the important physical process called magnetic reconnection using Earth’s magnetosphere as a plasma laboratory. EPD comprises two sensor types, the Energetic Ion Spectrometer (EIS) with one instrument on each of the 4 spacecraft, and the Fly’s Eye Energetic Particle Spectrometer (FEEPS) with 2 instruments on each of the 4 spacecraft. EIS measures energetic ion energy, angle and elemental compositional distributions from a required low energy limit of 20 keV for protons and 45 keV for oxygen ions, up to \u3e0.5 MeV (with capabilities to measure up to \u3e1 MeV). FEEPS measures instantaneous all sky images of energetic electrons from 25 keV to \u3e0.5 MeV, and also measures total ion energy distributions from 45 keV to \u3e0.5 MeV to be used in conjunction with EIS to measure all sky ion distributions. In this report we describe the EPD investigation and the details of the EIS sensor. Specifically we describe EPD-level science objectives, the science and measurement requirements, and the challenges that the EPD team had in meeting these requirements. Here we also describe the design and operation of the EIS instruments, their calibrated performances, and the EIS in-flight and ground operations. Blake et al. (The Flys Eye Energetic Particle Spectrometer (FEEPS) contribution to the Energetic Particle Detector (EPD) investigation of the Magnetospheric Magnetoscale (MMS) Mission, this issue) describe the design and operation of the FEEPS instruments, their calibrated performances, and the FEEPS in-flight and ground operations. The MMS spacecraft will launch in early 2015, and over its 2-year mission will provide comprehensive measurements of magnetic reconnection at Earth’s magnetopause during the 18 months that comprise orbital phase 1, and magnetic reconnection within Earth’s magnetotail during the about 6 months that comprise orbital phase 2

    The long period of 3He-rich solar energetic particles measured by Solar Orbiter 2020 November 17–23

    Get PDF
    We report observations of a relatively long period of He-3-rich solar energetic particles (SEPs) measured by Solar Orbiter. The period consists of several well-resolved ion injections. The high-resolution STEREO-A imaging observations reveal that the injections coincide with extreme ultraviolet jets and brightenings near the east limb, not far from the nominal magnetic connection of Solar Orbiter. The jets originated in two adjacent, large, and complex active regions, as observed by the Solar Dynamics Observatory when the regions rotated into the Earth's view. It appears that the sustained ion injections were related to the complex configuration of the sunspot group and the long period of He-3-rich SEPs to the longitudinal extent covered by the group during the analyzed time period

    Intravenous alteplase for stroke with unknown time of onset guided by advanced imaging: systematic review and meta-analysis of individual patient data

    Get PDF
    Background: Patients who have had a stroke with unknown time of onset have been previously excluded from thrombolysis. We aimed to establish whether intravenous alteplase is safe and effective in such patients when salvageable tissue has been identified with imaging biomarkers. Methods: We did a systematic review and meta-analysis of individual patient data for trials published before Sept 21, 2020. Randomised trials of intravenous alteplase versus standard of care or placebo in adults with stroke with unknown time of onset with perfusion-diffusion MRI, perfusion CT, or MRI with diffusion weighted imaging-fluid attenuated inversion recovery (DWI-FLAIR) mismatch were eligible. The primary outcome was favourable functional outcome (score of 0–1 on the modified Rankin Scale [mRS]) at 90 days indicating no disability using an unconditional mixed-effect logistic-regression model fitted to estimate the treatment effect. Secondary outcomes were mRS shift towards a better functional outcome and independent outcome (mRS 0–2) at 90 days. Safety outcomes included death, severe disability or death (mRS score 4–6), and symptomatic intracranial haemorrhage. This study is registered with PROSPERO, CRD42020166903. Findings: Of 249 identified abstracts, four trials met our eligibility criteria for inclusion: WAKE-UP, EXTEND, THAWS, and ECASS-4. The four trials provided individual patient data for 843 individuals, of whom 429 (51%) were assigned to alteplase and 414 (49%) to placebo or standard care. A favourable outcome occurred in 199 (47%) of 420 patients with alteplase and in 160 (39%) of 409 patients among controls (adjusted odds ratio [OR] 1·49 [95% CI 1·10–2·03]; p=0·011), with low heterogeneity across studies (I2=27%). Alteplase was associated with a significant shift towards better functional outcome (adjusted common OR 1·38 [95% CI 1·05–1·80]; p=0·019), and a higher odds of independent outcome (adjusted OR 1·50 [1·06–2·12]; p=0·022). In the alteplase group, 90 (21%) patients were severely disabled or died (mRS score 4–6), compared with 102 (25%) patients in the control group (adjusted OR 0·76 [0·52–1·11]; p=0·15). 27 (6%) patients died in the alteplase group and 14 (3%) patients died among controls (adjusted OR 2·06 [1·03–4·09]; p=0·040). The prevalence of symptomatic intracranial haemorrhage was higher in the alteplase group than among controls (11 [3%] vs two [&lt;1%], adjusted OR 5·58 [1·22–25·50]; p=0·024). Interpretation: In patients who have had a stroke with unknown time of onset with a DWI-FLAIR or perfusion mismatch, intravenous alteplase resulted in better functional outcome at 90 days than placebo or standard care. A net benefit was observed for all functional outcomes despite an increased risk of symptomatic intracranial haemorrhage. Although there were more deaths with alteplase than placebo, there were fewer cases of severe disability or death. Funding: None

    Association between dispatch of mobile stroke units and functional outcomes among patients with acute ischemic stroke in Berlin

    Get PDF
    Importance Effects of thrombolysis in acute ischemic stroke are time-dependent. Ambulances that can administer thrombolysis (mobile stroke units [MSUs]) before arriving at the hospital have been shown to reduce time to treatment. Objective To determine whether dispatch of MSUs is associated with better clinical outcomes for patients with acute ischemic stroke. Design, Setting, and Participants This prospective, nonrandomized, controlled intervention study was conducted in Berlin, Germany, from February 1, 2017, to October 30, 2019. If an emergency call prompted suspicion of stroke, both a conventional ambulance and an MSU, when available, were dispatched. Functional outcomes of patients with final diagnosis of acute cerebral ischemia who were eligible for thrombolysis or thrombectomy were compared based on the initial dispatch (both MSU and conventional ambulance or conventional ambulance only). Exposure Simultaneous dispatch of an MSU (computed tomographic scanning with or without angiography, point-of-care laboratory testing, and thrombolysis capabilities on board) and a conventional ambulance (n = 749) vs conventional ambulance alone (n = 794). Main Outcomes and Measures The primary outcome was the distribution of modified Rankin Scale (mRS) scores (a disability score ranging from 0, no neurological deficits, to 6, death) at 3 months. The coprimary outcome was a 3-tier disability scale at 3 months (none to moderate disability; severe disability; death) with tier assignment based on mRS scores if available or place of residence if mRS scores were not available. Common odds ratios (ORs) were used to quantify the association between exposure and outcome; values less than 1.00 indicated a favorable shift in the mRS distribution and lower odds of higher levels of disability. Results Of the 1543 patients (mean age, 74 years; 723 women [47%]) included in the adjusted primary analysis, 1337 (87%) had available mRS scores (primary outcome) and 1506 patients (98%) had available the 3-tier disability scale assessment (coprimary outcome). Patients with an MSU dispatched had lower median mRS scores at month 3 (1; interquartile range [IQR], 0-3) than did patients without an MSU dispatched (2; IQR, 0-3; common OR for worse mRS, 0.71; 95% CI, 0.58-0.86; P < .001). Similarly, patients with an MSU dispatched had lower 3-month coprimary disability scores: 586 patients (80.3%) had none to moderate disability; 92 (12.6%) had severe disability; and 52 (7.1%) had died vs patients without an MSU dispatched: 605 (78.0%) had none to moderate disability; 103 (13.3%) had severe disability; and 68 (8.8%) had died (common OR for worse functional outcome, 0.73, 95% CI, 0.54-0.99; P = .04). Conclusions and Relevance In this prospective, nonrandomized, controlled intervention study of patients with acute ischemic stroke in Berlin, Germany, the dispatch of mobile stroke units, compared with conventional ambulances alone, was significantly associated with lower global disability at 3 months. Clinical trials in other regions are warranted.This cohort study compares global disability at 3 months among Berlin patients with out-of-hospital ischemic stroke brought to care via a mobile stroke unit ambulance (with prehospital CT scanning with or without angiography, point-of-care laboratory testing, prehospital thrombolysis) vs conventional ambulance alone.Question Is the dispatch of mobile stroke units in the out-of-hospital setting before arriving at the hospital associated with better functional outcomes among patients with acute ischemic stroke eligible for thrombolysis or thrombectomy? Findings In this prospective nonrandomized controlled intervention study involving 1543 patients in Berlin, Germany, the dispatch of mobile stroke units in addition to conventional ambulances vs conventional ambulances alone was significantly associated with lower levels of global disability at 3 months (common odds ratio for higher modified Rankin Scale scores [ie, worse outcome], 0.71). Meaning Among patients with acute ischemic stroke in Berlin, Germany, dispatch of a mobile stroke unit was associated with lower global disability at 3 months; further research in diverse settings is needed.Clinical epidemiolog

    A case report of delayed cortical infarction adjacent to sulcal clots after traumatic subarachnoid hemorrhage in the absence of proximal vasospasm

    Get PDF
    Background Cortical ischemic lesions represent the predominant pathomorphological pattern of focal lesions after aneurysmal subarachnoid hemorrhage (aSAH). Autopsy studies suggest that they occur adjacent to subarachnoid blood and are related to spasm of small cortical rather than proximal arteries. Recent clinical monitoring studies showed that cortical spreading depolarizations, which induce cortical arterial spasms, are involved in lesion development. If subarachnoid blood induces adjacent cortical lesions, it would be expected that (i) they also develop after traumatic subarachnoid hemorrhage (tSAH), and (ii) lesions after tSAH can occur in absence of angiographic vasospasm, as was found for aSAH. Case presentation An 86-year-old woman was admitted to our hospital with fluctuating consciousness after hitting her head during a fall. The initial computed tomography (CT) was significant for tSAH in cortical sulci. On day 8, the patient experienced a secondary neurological deterioration with reduced consciousness and global aphasia. Whereas the CT scan on day 9 was still unremarkable, magnetic resonance imaging (MRI) on day 10 revealed new cortical laminar infarcts adjacent to sulcal blood clots. Proximal vasospasm was ruled out using MR and CT angiography and Doppler sonography. CT on day 14 confirmed the delayed infarcts. Conclusions We describe a case of delayed cortical infarcts around sulcal blood clots after tSAH in the absence of proximal vasospasm, similar to results found previously for aSAH. As for aSAH, this case suggests that assessment of angiographic vasospasm is not sufficient to screen for risk of delayed infarcts after tSAH. Electrocorticography is suggested as a complementary method to monitor the hypothesized mechanism of spreading depolarizations

    First year of energetic particle measurements in the inner heliosphere with Solar Orbiter's Energetic Particle Detector

    Get PDF
    Context. Solar Orbiter strives to unveil how the Sun controls and shapes the heliosphere and fills it with energetic particle radiation. To this end, its Energetic Particle Detector (EPD) has now been in operation, providing excellent data, for just over a year.Aims. EPD measures suprathermal and energetic particles in the energy range from a few keV up to (near-) relativistic energies (few MeV for electrons and about 500 MeV nuc(-1) for ions). We present an overview of the initial results from the first year of operations and we provide a first assessment of issues and limitations. In addition, we present areas where EPD excels and provides opportunities for significant scientific progress in understanding how our Sun shapes the heliosphere.Methods. We used the solar particle events observed by Solar Orbiter on 21 July and between 10 and 11 December 2020 to discuss the capabilities, along with updates and open issues related to EPD on Solar Orbiter. We also give some words of caution and caveats related to the use of EPD-derived data.Results. During this first year of operations of the Solar Orbiter mission, EPD has recorded several particle events at distances between 0.5 and 1 au from the Sun. We present dynamic and time-averaged energy spectra for ions that were measured with a combination of all four EPD sensors, namely: the SupraThermal Electron and Proton sensor (STEP), the Electron Proton Telescope (EPT), the Suprathermal Ion Spectrograph (SIS), and the High-Energy Telescope (HET) as well as the associated energy spectra for electrons measured with STEP and EPT. We illustrate the capabilities of the EPD suite using the 10 and 11 December 2020 solar particle event. This event showed an enrichment of heavy ions as well as He-3, for which we also present dynamic spectra measured with SIS. The high anisotropy of electrons at the onset of the event and its temporal evolution is also shown using data from these sensors. We discuss the ongoing in-flight calibration and a few open instrumental issues using data from the 21 July and the 10 and 11 December 2020 events and give guidelines and examples for the usage of the EPD data. We explain how spacecraft operations may affect EPD data and we present a list of such time periods in the appendix. A list of the most significant particle enhancements as observed by EPT during this first year is also provided.</p

    First near-relativistic solar electron events observed by EPD onboard Solar Orbiter

    Get PDF
    Context. Solar Orbiter, launched in February 2020, started its cruise phase in June 2020, in coincidence with its first perihelion at 0.51 au from the Sun. The in situ instruments onboard, including the Energetic Particle Detector (EPD), operate continuously during the cruise phase enabling the observation of solar energetic particles. Aims. In situ measurements of the first near-relativistic solar electron events observed in July 2020 by EPD are analyzed and the solar origins and the conditions for the interplanetary transport of these particles investigated. Methods. Electron observations from keV energies to the near-relativistic range were combined with the detection of type III radio bursts and extreme ultraviolet (EUV) observations from multiple spacecraft in order to identify the solar origin of the electron events. Electron anisotropies and timing as well as the plasma and magnetic field environment were evaluated to characterize the interplanetary transport conditions. Results. All electron events were clearly associated with type III radio bursts. EUV jets were also found in association with all of them except one. A diversity of time profiles and pitch-angle distributions was observed. Different source locations and different magnetic connectivity and transport conditions were likely involved. The July 11 event was also detected by Wind, separated 107 degrees in longitude from Solar Orbiter. For the July 22 event, the Suprathermal Electron and Proton sensor of EPD allowed for us to not only resolve multiple electron injections at low energies, but it also provided an exceptionally high pitch-angle resolution of a very anisotropic beam. This, together with radio observations of local Langmuir waves suggest a very good magnetic connection during the July 22 event. This scenario is challenged by a high-frequency occultation of the type III radio burst and a nominally non-direct connection to the source; therefore, magnetic connectivity requires further investigation.</p
    • …
    corecore