140 research outputs found
Electrodynamic coupling of electric dipole emitters to a fluctuating mode density within a nano-cavity
We investigate the impact of rotational diffusion on the electrodynamic
coupling of fluorescent dye molecules (oscillating electric dipoles) to a
tunable planar metallic nanocavity. Fast rotational diffusion of the molecules
leads to a rapidly fluctuating mode density of the electromagnetic field along
the molecules' dipole axis, which significantly changes their coupling to the
field as compared to the opposite limit of fixed dipole orientation. We derive
a theoretical treatment of the problem and present experimental results for
rhodamine 6G molecules in cavities filled with low and high viscosity liquids.
The derived theory and presented experimental method is a powerful tool for
determining absolute quantum yield values of fluorescence.Comment: 5 pages, 3 figures, accepted by Physical Review Letter
Exploratory study of three-point Green's functions in Landau-gauge Yang-Mills theory
Green's functions are a central element in the attempt to understand
non-perturbative phenomena in Yang-Mills theory. Besides the propagators,
3-point Green's functions play a significant role, since they permit access to
the running coupling constant and are an important input in functional methods.
Here we present numerical results for the two non-vanishing 3-point Green's
functions in 3d pure SU(2) Yang-Mills theory in (minimal) Landau gauge, i.e.
the three-gluon vertex and the ghost-gluon vertex, considering various
kinematical regimes. In this exploratory investigation the lattice volumes are
limited to 20^3 and 30^3 at beta=4.2 and beta=6.0. We also present results for
the gluon and the ghost propagators, as well as for the eigenvalue spectrum of
the Faddeev-Popov operator. Finally, we compare two different numerical methods
for the evaluation of the inverse of the Faddeev-Popov matrix, the point-source
and the plane-wave-source methods.Comment: 18 pages, 12 figures, 3 table
Modelling the complex evaporated gas flow and its impact on particle spattering during laser powder bed fusion
The additive manufacturing (AM) of metals is becoming an increasingly important production process with the potential to replace traditional techniques such as casting. Laser Powder Bed Fusion (LPBF) is used in many applications to print metal parts from powder. The metal powder is heated locally with sufficient laser radiation that the liquid melt easily reaches its boiling temperature, which leads to a metallic vapour jet that can entrain both powder bed particles and molten droplets. The small size of laser-matter interaction site makes a detailed experimental analysis of the process challenging. Synchrotron X-ray imaging experiments are one of the few methods which can capture the dynamic melting and solidification processes. Comparing such experiments with computer simulations of the process is an important approach in order to better understand the manufacturing process and to analyse the influence of process parameters on the evaporated gas jet and the subsequent impact on particle ejection, leading to potentially reduced AM component quality. The melting and solidification of the metal powder is simulated using an Eulerian multiphase approach based on a control volume discretization of powder bed and substrate and a volume of liquid separation from melt and gas phase. The gas phase modelled as an ideal gas reaches velocities up to 100 m/s. Lagrangian particle tracking in the simulation demonstrates that the velocity fields calculated by the Eulerian multi-phase approach in combination with a standard drag-force model lead to particle accelerations in good agreement with those measured experimentally. In order to avoid numerical laborious Lagrangian calculations, a direct method to compare an Eulerian multiphase simulation with synchrotron X-ray experiments was introduced and validated. This approach is used to analyse the influence of process parameters including laser power and laser speed on the maximal acceleration of particles from the melt pool area. While the particle acceleration increases linearly with line energy in the conduction mode, a linear decrease of the acceleration with increasing line energy can be found in the transition mode before the acceleration increases again with line energy in the keyhole mode
On the leading OPE corrections to the ghost-gluon vertex and the Taylor theorem
This brief note is devoted to a study of genuine non-perturbative corrections
to the Landau gauge ghost-gluon vertex in terms of the non-vanishing
dimension-two gluon condensate. We pay special attention to the kinematical
limit which the bare vertex takes for its tree-level expression at any
perturbative order, according to the well-known Taylor theorem. Based on our
OPE analysis, we also present a simple model for the vertex, in acceptable
agreement with lattice data.Comment: Final version published in JHE
Roles of the color antisymmetric ghost propagator in the infrared QCD
The results of Coulomb gauge and Landau gauge lattice QCD simulation do not
agree completely with continuum theory. There are indications that the ghost
propagator in the infrared region is not purely color diagonal as in high
energy region. After presenting lattice simulation of configurations produced
with Kogut-Susskind fermion (MILC collaboration) and those with domain wall
fermion (RBC/UKQCD collaboration), I investigate in triple gluon vertex and the
ghost-gluon-ghost vertex how the square of the color antisymmetric ghost
contributes. Then the effect of the vertex correction to the gluon propagator
and the ghost propagator is investigated.
Recent Dyson-Schwinger equation analysis suggests the ghost dressing function
finite and no infrared enhancement or . But the ghost
propagator renormalized by the loop containing a product of color antisymmetric
ghost is expected to behave as with
with , if the fixed point
scenario is valid. I interpret the solution should contain a
vertex correction. The infrared exponent of our lattice Landau gauge gluon
propagator of the RBC/UKQCD is and that of MILC is about
-0.7.
The implication for the Kugo-Ojima color confinement criterion, QCD effective
coupling and the Slavnov identity are given.Comment: 13 pages 10 figures, references added and revised. version to be
published in Few-Body System
Truncating first-order Dyson-Schwinger equations in Coulomb-Gauge Yang-Mills theory
The non-perturbative domain of QCD contains confinement, chiral symmetry
breaking, and the bound state spectrum. For the calculation of the latter, the
Coulomb gauge is particularly well-suited. Access to these non-perturbative
properties should be possible by means of the Green's functions. However,
Coulomb gauge is also very involved, and thus hard to tackle. We introduce a
novel BRST-type operator r, and show that the left-hand side of Gauss' law is
r-exact.
We investigate a possible truncation scheme of the Dyson-Schwinger equations
in first-order formalism for the propagators based on an instantaneous
approximation. We demonstrate that this is insufficient to obtain solutions
with the expected property of a linear-rising Coulomb potential. We also show
systematically that a class of possible vertex dressings does not change this
result.Comment: 22 pages, 4 figures, 1 tabl
Infrared Properties of QCD from Dyson-Schwinger equations
I review recent results on the infrared properties of QCD from
Dyson-Schwinger equations. The topics include infrared exponents of
one-particle irreducible Green's functions, the fixed point behaviour of the
running coupling at zero momentum, the pattern of dynamical quark mass
generation and properties of light mesons.Comment: 47 pages, 19 figures, Topical Review to be published in J.Phys.G, v2:
typos corrected and some references adde
Infrared Behavior of Three-Point Functions in Landau Gauge Yang-Mills Theory
Analytic solutions for the three-gluon and ghost-gluon vertices in Landau
gauge Yang-Mills theory at low momenta are presented in terms of hypergeometric
series. They do not only show the expected scaling behavior but also additional
kinematic divergences when only one momentum goes to zero. These singularities,
which have also been proposed previously, induce a strong dependence on the
kinematics in many dressing functions. The results are generalized to two and
three dimensions and a range of values for the ghost propagator's infrared
exponent kappa.Comment: 21 pages, 29 figures; numerical data of the infrared dressing
functions can be obtained from the authors v2: a few minor changes,
corresponds to version appearing in EPJ
- …