79 research outputs found

    A microfluidic device for array patterning by perpendicular electrokinetic focusing

    Get PDF
    This paper describes a microfluidic chip in which two perpendicular laminar-flow streams can be operated to sequentially address the surface of a flow-chamber with semi-parallel sample streams. The sample streams can be controlled in position and width by the method of electrokinetic focusing. For this purpose, each of the two streams is sandwiched by two parallel sheath flow streams containing just a buffer solution. The streams are being electroosmotically pumped, allowing a simple chip design and a setup with no moving parts. Positioning of the streams was adjusted in real-time by controlling the applied voltages according to an analytical model. The perpendicular focusing gives rise to overlapping regions, which, by combinatorial (bio) chemistry, might be used for fabrication of spot arrays of immobilized proteins and other biomolecules. Since the patterning procedure is done in a closed, liquid filled flow-structure, array spots will never be exposed to air and are prevented from drying. With this device configuration, it was possible to visualize an array of 49 spots on a surface area of 1 mm2. This article describes the principle, fabrication, experimental results, analytical modeling and numerical simulations of the microfluidic chip.\ud \ud \ud \u

    Proteomics-on-a-chip for Biomarker discovery

    Get PDF
    In proteomics research still two-dimensional gel electrophoresis (2D-GE) is currently used for biomarker discovery. We applied free flow electrophoresis (FFE) separation technology combined with biomolecular interaction sensing using Surface Plasmon Resonance (SPR) imaging in an integrated proteomics-on-a-chip device as a proof of concept for biomarker discovery

    Synchronized, continuous-flow zone electrophoresis

    Get PDF
    A new method for performing continuous electrophoretic separation of complex mixtures in microscale devices is proposed. Unlike in free-flow electrophoresis devices, no mechanical pumping is requiredboth fluid transport and separation are driven electrokinetically. This gives the method great potential for on-a-chip integration in multistep analytical systems. The method enables us to collect fractionated sample and tensfold purification is possible. The model of the operation is presented and a detailed description of the optimal conditions for performing purification is given. The chip devices with 10-μm-deep separation chamber of 1.5 mm × 4 mm in size were fabricated in glass. A standard microchip electrophoresis setup was used. Continuous separation of rhodamine B, rhodamine 6G, and fluorescein was accomplished. Purification was demonstrated on a mixture containing rhodamine B and fluorescein, and the recovery of both fractions was achieved. The results show the feasibility of the method

    An all-glass microfluidic network with integrated amorphous silicon photosensors for on-chip monitoring of enzymatic biochemical assay

    Get PDF
    A lab-on-chip system, integrating an all-glass microfluidics and on-chip optical detection, was developed and tested. The microfluidic network is etched in a glass substrate, which is then sealed with a glass cover by direct bonding. Thin film amorphous silicon photosensors have been fabricated on the sealed microfluidic substrate preventing the contamination of the micro-channels. The microfluidic network is then made accessible by opening inlets and outlets just prior to the use, ensuring the sterility of the device. The entire fabrication process relies on conventional photolithographic microfabrication techniques and is suitable for low-cost mass production of the device. The lab-on-chip system has been tested by implementing a chemiluminescent biochemical reaction. The inner channel walls of the microfluidic network are chemically functionalized with a layer of polymer brushes and horseradish peroxidase is immobilized into the coated channel. The results demonstrate the successful on-chip detection of hydrogen peroxide down to 18 mu M by using luminol and 4-iodophenol as enhancer agent

    One-step sculpting of silicon microstructures from pillars to needles for water and oil repelling surfaces

    Get PDF
    Surfaces that repel both water and oil effectively (contact angles > 150°) are rare. Here we detail the microfabrication method of silicon surfaces with such properties. The method is based on careful tuning of the process conditions in a reactive etching protocol. We investigate the influence of SF6, O2 and CHF3 gases during the etching process using the same pitch of a photolithographic mask. Varying the loading conditions during etching, we optimized the conditions to fabricate homogeneous pedestal-like structures. The roughness of the microstructures could also effectively be controlled by tuning the dry plasma etching conditions. The wetting behavior of the resulting microstructures was evaluated in terms of the water and oil contact angles. Excitingly, the surfaces can be engineered from superhydrophobic to omniphobic by variation of the aforementioned predefined parameter

    Understanding blood oxygenation in a microfluidic meander double side membrane contactor

    Get PDF
    Lung disease is one of the most important causes of high morbidity in preterm infants. In this work, we study a simple and easy to fabricate microfluidic device that demonstrates a great potential for blood oxygenation. A meander type architecture with double side vertical membrane arrangement has been selected as reference model to investigate the oxygenation process. The design criteria for the fabricated devices has been to maximize the oxygen saturation level while ensuring the physiological blood flow in order to avoid thrombus formation and channel blockage during operation. A mathematical model for the oxygen transfer has been developed and validated by the experimental study. The obtained results demonstrate that blood was successfully oxygenated up to approximately 98% of O-2 saturation and that the oxygen transfer rate at 1 mL/min blood flow rate was approximately 92 mL/minm(2). Finally, a sensitivity analysis of the key parameters, i.e. size of the channel, oxygen concentration in the gas phase and oxygen permeation properties of the membrane, is carried out to discuss the performance limits and to settle the guidelines for future developments.The authors would like to acknowledge the financial support from the Government of Aragón and the Education, Audiovisual and Culture Executive Agency (EU-EACEA) within the EUDIME - 'Erasmus Mundus Doctorate in Membrane Engineering' program (FPA 2011-0014, SGA 2012-1719, http://eudime.unical.it). CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011 financed by the Instituto de Salud Carlos III with the assistance of the European Regional Development Fund. Authors acknowledge the LMA-INA for offering access to their instruments and expertise

    Optimisation of Operator Support Systems through Artificial Intelligence for the Cast Steel Industry:A Case for Optimisation of the Oxygen Blowing Process Based on Machine Learning Algorithms

    Get PDF
    The processes involved in the metallurgical industry consume significant amounts of energy and materials, so improving their control would result in considerable improvements in the efficient use of these resources. This study is part of the MORSE H2020 Project, and it aims to implement an operator support system that improves the efficiency of the oxygen blowing process of a real cast steel foundry. For this purpose, a machine learning agent is developed according to a reinforcement learning method suitable for the dynamics of the oxygen blowing process in the cast steel factory. This reinforcement learning agent is trained with both historical data provided by the company and data generated by an external model. The trained agent will be the basis of the operator support system that will be integrated into the factory, allowing the agent to continue improving with new and real experience. The results show that the suggestions of the agent improve as it gains experience, and consequently the efficiency of the process also improves. As a result, the success rate of the process increases by 12%
    corecore