17 research outputs found

    Hot Jupiters from Secular Planet--Planet Interactions

    Full text link
    About 25 per cent of `hot Jupiters' (extrasolar Jovian-mass planets with close-in orbits) are actually orbiting counter to the spin direction of the star. Perturbations from a distant binary star companion can produce high inclinations, but cannot explain orbits that are retrograde with respect to the total angular momentum of the system. Such orbits in a stellar context can be produced through secular (that is, long term) perturbations in hierarchical triple-star systems. Here we report a similar analysis of planetary bodies, including both octupole-order effects and tidal friction, and find that we can produce hot Jupiters in orbits that are retrograde with respect to the total angular momentum. With distant stellar mass perturbers, such an outcome is not possible. With planetary perturbers, the inner orbit's angular momentum component parallel to the total angular momentum need not be constant. In fact, as we show here, it can even change sign, leading to a retrograde orbit. A brief excursion to very high eccentricity during the chaotic evolution of the inner orbit allows planet-star tidal interactions to rapidly circularize that orbit, decoupling the planets and forming a retrograde hot Jupiter.Comment: accepted for publication by Nature, 3 figures (version after proof - some typos corrected

    Planet Populations as a Function of Stellar Properties

    Full text link
    Exoplanets around different types of stars provide a window into the diverse environments in which planets form. This chapter describes the observed relations between exoplanet populations and stellar properties and how they connect to planet formation in protoplanetary disks. Giant planets occur more frequently around more metal-rich and more massive stars. These findings support the core accretion theory of planet formation, in which the cores of giant planets form more rapidly in more metal-rich and more massive protoplanetary disks. Smaller planets, those with sizes roughly between Earth and Neptune, exhibit different scaling relations with stellar properties. These planets are found around stars with a wide range of metallicities and occur more frequently around lower mass stars. This indicates that planet formation takes place in a wide range of environments, yet it is not clear why planets form more efficiently around low mass stars. Going forward, exoplanet surveys targeting M dwarfs will characterize the exoplanet population around the lowest mass stars. In combination with ongoing stellar characterization, this will help us understand the formation of planets in a large range of environments.Comment: Accepted for Publication in the Handbook of Exoplanet

    The Rossiter-McLaughlin effect in Exoplanet Research

    Full text link
    The Rossiter-McLaughlin effect occurs during a planet's transit. It provides the main means of measuring the sky-projected spin-orbit angle between a planet's orbital plane, and its host star's equatorial plane. Observing the Rossiter-McLaughlin effect is now a near routine procedure. It is an important element in the orbital characterisation of transiting exoplanets. Measurements of the spin-orbit angle have revealed a surprising diversity, far from the placid, Kantian and Laplacian ideals, whereby planets form, and remain, on orbital planes coincident with their star's equator. This chapter will review a short history of the Rossiter-McLaughlin effect, how it is modelled, and will summarise the current state of the field before describing other uses for a spectroscopic transit, and alternative methods of measuring the spin-orbit angle.Comment: Review to appear as a chapter in the "Handbook of Exoplanets", ed. H. Deeg & J.A. Belmont

    Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers

    Full text link
    We present a review of the interplay between the evolution of circumstellar disks and the formation of planets, both from the perspective of theoretical models and dedicated observations. Based on this, we identify and discuss fundamental questions concerning the formation and evolution of circumstellar disks and planets which can be addressed in the near future with optical and infrared long-baseline interferometers. Furthermore, the importance of complementary observations with long-baseline (sub)millimeter interferometers and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics Review"; The final publication is available at http://www.springerlink.co

    Extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way

    Get PDF
    This document is the Accepted Manuscript version of the following article: L. M. Howes, et al, ‘Extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way’, Nature, Vol. 527, November 2015. This manuscript version is made available under the Nature Research’s Conditions of Use, http://www.nature.com/authors/policies/license.html#Self_archiving_policy. The final, published version is available online at DOI: http://www.nature.com/doifinder/10.1038/nature15747. © 2015 Macmillan Publishers Limited. All rights reservedThe first stars are predicted to have formed within 200 million years after the Big Bang, initiating the cosmic dawn. A true first star has not yet been discovered, although stars with tiny amounts of elements heavier than helium ('metals') have been found in the outer regions ('halo') of the Milky Way. The first stars and their immediate successors should, however, preferentially be found today in the central regions ('bulges') of galaxies, because they formed in the largest over-densities that grew gravitationally with time. The Milky Way bulge underwent a rapid chemical enrichment during the first 1-2 billion years, leading to a dearth of early, metal-poor stars. Here we report observations of extremely metal-poor stars in the Milky Way bulge, including one star with an iron abundance about 10,000 times lower than the solar value without noticeable carbon enhancement. We confirm that the most metal-poor bulge stars are on tight orbits around the Galactic Centre, rather than being halo stars passing through the bulge, as expected for stars formed at redshifts greater than 15. Their chemical compositions are in general similar to typical halo stars of the same metallicity although intriguing differences exist, including lower abundances of carbon.Peer reviewedFinal Accepted Versio

    Tidal Interactions between Binary Stars Can Drive Lithium Production in Low-mass Red Giants

    Get PDF
    Theoretical models of stellar evolution predict that most of the lithium inside a star is destroyed as the star becomes a red giant. However, observations reveal that about 1% of red giants are peculiarly rich in lithium, often exceeding the amount in the interstellar medium or predicted from the Big Bang. With only about 150 lithium-rich giants discovered in the past four decades, and no distinguishing properties other than lithium enhancement, the origin of lithium-rich giant stars is one of the oldest problems in stellar astrophysics. Here we report the discovery of 2,330 low-mass (1 to 3 M⊙\,M_\odot) lithium-rich giant stars, which we argue are consistent with internal lithium production that is driven by tidal spin-up by a binary companion. Our sample reveals that most lithium-rich giants have helium-burning cores (80−6+7%80^{+7}_{-6}\%), and that the frequency of lithium-rich giants rises with increasing stellar metallicity. We find that while planet accretion may explain some lithium-rich giants, it cannot account for the majority that have helium-burning cores. We rule out most other proposed explanations as the primary mechanism for lithium-rich giants, including all stages related to single star evolution. Our analysis shows that giants remain lithium-rich for only about two million years. A prediction from this lithium depletion timescale is that most lithium-rich giants with a helium-burning core have a binary companion
    corecore