81 research outputs found

    IASI spectral radiance validation inter-comparisons: case study assessment from the JAIVEx field campaign

    Get PDF
    Advanced satellite sensors are tasked with improving global-scale measurements of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring, and environmental change detection. Measurement system validation is crucial to achieving this goal and maximizing research and operational utility of resultant data. Field campaigns employing satellite under-flights with well-calibrated Fourier Transform Spectrometer (FTS) sensors aboard high-altitude aircraft are an essential part of this validation task. The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed-Interferometer (NAST-I) has been a fundamental contributor in this area by providing coincident high spectral and spatial resolution observations of infrared spectral radiances along with independently-retrieved geophysical products for comparison with like products from satellite sensors being validated. This manuscript focuses on validating infrared spectral radiance from the Infrared Atmospheric Sounding Interferometer (IASI) through a case study analysis using data obtained during the recent Joint Airborne IASI Validation Experiment (JAIVEx) field campaign. Emphasis is placed upon the benefits achievable from employing airborne interferometers such as the NAST-I since, in addition to IASI radiance calibration performance assessments, cross-validation with other advanced sounders such as the AQUA Atmospheric InfraRed Sounder (AIRS) is enabled

    Cast versus functional brace in the rehabilitation of patients treated non-operatively for a rupture of the Achilles tendon : protocol for UK Study of Tendo Achilles Rehabilitation (UK STAR)

    Get PDF
    Introduction Achilles tendon rupture affects over 11,000 people yearly in the UK, and the incidence is increasing. Controversy remains with regards the best rehabilitation strategy for these patients. In operatively treated patients, functional bracing provides better outcomes compared with plaster casts. However, the role of functional bracing in non-operatively managed patients is unclear. This is the protocol for a multi-centre randomised trial of plaster cast immobilisation versus functional bracing for patients with a non-operatively managed Achilles tendon rupture. Methods and analysis All adults presenting with a primary rupture of the Achilles tendon will be screened. Non-operatively treated patients will be eligible to take part in the trial. Broad eligibility criteria will ensure that the results of the study can be generalised to the wider patient population. Randomisation will be on a 1:1 basis. Both rehabilitation strategies are widely used within the NHS. Standardised protocols will be followed, but details of plaster material and brace will be as per the site’s usual practice. A minimum of 330 patients will be randomised to obtain 90% power to detect a difference of 8 points in Achilles Tendon Rupture Score (ATRS) at 9 months. Quality of life and resource use will also be collected at 3, 6 and 9 months. The differences between treatment groups will be assessed on an intention-to-treat basis. Results are expected to be available in the summer of 2019. Ethics and dissemination. National Research Ethic Committee approved this study on the 18th of March 2016 (16/SC/0109). The NIHR Health Technology Assessment monograph and a manuscript to a peer-reviewed journal will be submitted upon completion of the trial. The results of this trial will substantially inform clinical practice on the clinical and cost effectiveness of the treatment of this injury

    Biases in the air-sea flux of CO2 resulting from ocean surface temperature gradients

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C08S08, doi:10.1029/2003JC001800.The difference in the fugacities of CO2 across the diffusive sublayer at the ocean surface is the driving force behind the air-sea flux of CO2. Bulk seawater fugacity is normally measured several meters below the surface, while the fugacity at the water surface, assumed to be in equilibrium with the atmosphere, is measured several meters above the surface. Implied in these measurements is that the fugacity values are the same as those across the diffusive boundary layer. However, temperature gradients exist at the interface due to molecular transfer processes, resulting in a cool surface temperature, known as the skin effect. A warm layer from solar radiation can also result in a heterogeneous temperature profile within the upper few meters of the ocean. Here we describe measurements carried out during a 14-day study in the equatorial Pacific Ocean (GasEx-2001) aimed at estimating the gradients of CO2 near the surface and resulting flux anomalies. The fugacity measurements were corrected for temperature effects using data from the ship's thermosalinograph, a high-resolution profiler (SkinDeEP), an infrared radiometer (CIRIMS), and several point measurements at different depths on various platforms. Results from SkinDeEP show that the largest cool skin and warm layer biases occur at low winds, with maximum biases of −4% and +4%, respectively. Time series ship data show an average CO2 flux cool skin retardation of about 2%. Ship and drifter data show significant CO2 flux enhancement due to the warm layer, with maximums occurring in the afternoon. Temperature measurements were compared to predictions based on available cool skin parameterizations to predict the skin-bulk temperature difference, along with a warm layer model.This material is based upon work supported by the NSF under grant OCE-9986724, and by NOAA/OGP grant GC00-226

    Prognostic models for identifying risk of poor outcome in people with acute ankle sprains: the SPRAINED development and external validation study

    Get PDF
    BACKGROUND: Ankle sprains are very common injuries. Although recovery can occur within weeks, around one-third of patients have longer-term problems. OBJECTIVES: To develop and externally validate a prognostic model for identifying people at increased risk of poor outcome after an acute ankle sprain. DESIGN: Development of a prognostic model in a clinical trial cohort data set and external validation in a prospective cohort study. SETTING: Emergency departments (EDs) in the UK. PARTICIPANTS: Adults with an acute ankle sprain (within 7 days of injury). SAMPLE SIZE: There were 584 clinical trial participants in the development data set and 682 recruited for the external validation study. PREDICTORS: Candidate predictor variables were chosen based on availability in the clinical data set, clinical consensus, face validity, a systematic review of the literature, data quality and plausibility of predictiveness of the outcomes. MAIN OUTCOME MEASURES: Models were developed to predict two composite outcomes representing poor outcome. Outcome 1 was the presence of at least one of the following symptoms at 9 months after injury: persistent pain, functional difficulty or lack of confidence. Outcome 2 included the same symptoms as outcome 1, with the addition of recurrence of injury. Rates of poor outcome in the external data set were lower than in the development data set, 7% versus 20% for outcome 1 and 16% versus 24% for outcome 2. ANALYSIS: Multiple imputation was used to handle missing data. Logistic regression models, together with multivariable fractional polynomials, were used to select variables and identify transformations of continuous predictors that best predicted the outcome based on a nominal alpha of 0.157, chosen to minimise overfitting. Predictive accuracy was evaluated by assessing model discrimination (c-statistic) and calibration (flexible calibration plot). RESULTS: (1) Performance of the prognostic models in development data set - the combined c-statistic for the outcome 1 model across the 50 imputed data sets was 0.74 [95% confidence interval (CI) 0.70 to 0.79], with good model calibration across the imputed data sets. The combined c-statistic for the outcome 2 model across the 50 imputed data sets was 0.70 (95% CI 0.65 to 0.74), with good model calibration across the imputed data sets. Updating these models, which used baseline data collected at the ED, with an additional variable at 4 weeks post injury (pain when bearing weight on the ankle) improved the discriminatory ability (c-statistic 0.77, 95% CI 0.73 to 0.82, for outcome 1 and 0.75, 95% CI 0.71 to 0.80, for outcome 2) and calibration of both models. (2) Performance of the models in the external data set - the combined c-statistic for the outcome 1 model across the 50 imputed data sets was 0.73 (95% CI 0.66 to 0.79), with a calibration plot intercept of -0.91 (95% CI -0.98 to 0.44) and slope of 1.13 (95% CI 0.76 to 1.50). The combined c-statistic for the outcome 2 model across the 50 imputed data sets was 0.63 (95% CI 0.58 to 0.69), with a calibration plot intercept of -0.25 (95% CI -0.27 to 0.11) and slope of 1.03 (95% CI 0.65 to 1.42). The updated models with the additional pain variable at 4 weeks had improved discriminatory ability over the baseline models but not better calibration. CONCLUSIONS: The SPRAINED (Synthesising a clinical Prognostic Rule for Ankle Injuries in the Emergency Department) prognostic models performed reasonably well, and showed benefit compared with not using any model; therefore, the models may assist clinical decision-making when managing and advising ankle sprain patients in the ED setting. The models use predictors that are simple to obtain. LIMITATIONS: The data used were from a randomised controlled trial and so were not originally intended to fulfil the aim of developing prognostic models. However, the data set was the best available, including data on the symptoms and clinical events of interest. FUTURE WORK: Further model refinement, including recalibration or identifying additional predictors, may be required. The effect of implementing and using either model in clinical practice, in terms of acceptability and uptake by clinicians and on patient outcomes, should be investigated. TRIAL REGISTRATION: Current Controlled Trials ISRCTN12726986. FUNDING: This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 22, No. 64. See the NIHR Journals Library website for further project information. Funding was also recieved from the NIHR Collaboration for Leadership in Applied Health Research, Care Oxford at Oxford Health NHS Foundation Trust, NIHR Biomedical Research Centre, Oxford, and the NIHR Fellowship programme

    Atividade fĂ­sica, qualidade de vida e depressĂŁo durante a gravidez

    Get PDF
    This study examines physical activity patterns among women, from pre-pregnancy to the second trimester of pregnancy, and the relationship between physical activity status based on physical activity guidelines and health-related quality of life (HRQoL) and depression over pregnancy. 56 healthy pregnant women self reported physical activity, HRQoL and depression at 10-15 and 19-24 weeks of pregnancy and physical activity before pregnancy. Whereas vigorous leisure physical activity decreased after conception, moderate leisure physical activity and work related physical activity remained stable over time. The prevalence of recommended physical activity was 39.3% and 12.5% in the 1st and 2nd trimesters of pregnancy respectively, and 14.3% pre-pregnancy. From the 1st to the 2nd pregnancy trimester, most physical HRQoL dimensions scores decreased and only mental component increased, independently of physical activity status. No changes in mean depression scores were observed. These data suggest that physical activity patterns change with pregnancy and that physical and mental components are differentially affected by pregnancy course, independently of physical activity status.Este estudo examina os padrĂ”es de atividade fĂ­sica antes da concepção atĂ© o segundo trimestre de gravidez e a relação entre o nĂ­vel de atividade fĂ­sica, com base nas recomendaçÔes de atividade fĂ­sica, a qualidade de vida relacionada Ă  saĂșde (QVRS) e depressĂŁo ao longo da gravidez. Cinquenta e seis grĂĄvidas saudĂĄveis reportaram nĂ­vel de atividade fĂ­sica, QVRS e depressĂŁo Ă s 10-15 e 19-24 semanas de gravidez, alĂ©m de atividade fĂ­sica antes da concepção. Enquanto a atividade fĂ­sica vigorosa no lazer diminuiu depois da concepção, as atividades fĂ­sicas moderadas no lazer e no trabalho mantiveram-se estĂĄveis. A prevalĂȘncia de atividade fĂ­- sica recomendada foi de 39,3%, 12,5% e 14,3% antes, no primeiro e no segundo trimestres de gravidez, respectivamente. Independentemente do estatuto de atividade fĂ­sica, a maior parte dos escores nas dimensĂ”es fĂ­sicas da QVRS diminui do primeiro para o segundo trimestre de gestação, e apenas o componente mental aumenta. NĂŁo se verificaram alteraçÔes nos escores mĂ©dios de depressĂŁo. Estes dados sugerem que, com a gravidez, hĂĄ alteração nos padrĂ”es de atividade fĂ­sica; alĂ©m disso, os componentes fĂ­sico e mental sĂŁo diferentemente afetados pelo curso da gestação, independentemente do nĂ­vel de atividade fĂ­sica

    Platelet-rich plasma in Achilles tendon healing 2 (PATH-2) trial: statistical analysis plan for a multicentre, double-blinded, parallel-group, placebo-controlled randomised clinical trial.

    Get PDF
    BACKGROUND: There has been a recent steep growth in platelet-rich plasma (PRP) use for musculoskeletal conditions, but findings from high quality clinical trial data are lacking in the literature. Here, we describe the statistical analysis plan (SAP) for the Platelet-rich plasma in Achilles Tendon Healing 2 (PATH-2) trial. METHODS: PATH-2 is a pragmatic, parallel-group, multi-centre, double-blinded, randomised, placebo-controlled, superiority trial. The study aims to evaluate the clinical efficacy of PRP in acute Achilles tendon rupture in terms of muscle-tendon function. Patients are identified in the orthopaedic/trauma outpatient clinic. The primary outcome is muscle-tendon work capacity from the Heel Rise Endurance Test result, expressed as the Limb Symmetry Index (work, in joules), at 24 weeks post randomisation. Multivariate linear regression adjusting for the stratification factors (centre and age) and additional prognostic factors will be used to investigate the adjusted effect of the intervention. The analysis will be by modified intention-to-treat. Sensitivity analysis will assess the internal validity of the trial results by performing a per-protocol analysis. Safety will be summarised by treatment arm for all patients who started treatment. Secondary patient-reported outcome measures will be analysed using linear mixed effects models to allow all data collected at all follow-up points to be considered. Missing data will be summarised and reported by treatment arm. Missing data imputation will be performed, if appropriate. DISCUSSION: The PATH-2 trial will be reported in accordance with the CONSORT statement. This SAP publication will avoid bias arising from prior knowledge of the study results. Any changes or deviations from the current SAP will be described and justified in the final report. TRIAL REGISTRATION: ISRCTN registry: ISRCTN54992179 , assigned 12 January 2015. ClinicalTrials.gov: NCT02302664, received 18 November 2014. UK Clinical Research Network Study Portfolio Database: ID 17850
    • 

    corecore