109 research outputs found

    In-situ measurement of journal bearing lubricant viscosity by means of a novel ultrasonic measurement technique using matching layer

    Get PDF
    An ultrasonic viscometer was used to measure the circumferential viscosity variation in a journal bearing non-invasively. This sensing technique is based on the reflection of a shear wave at a solid-liquid boundary that depends on the viscosity of the liquid and the acoustic properties of the solid. Very little ultrasonic energy can propagate into the oil at a metal-oil interface because the acoustic mismatch is significant. Interleaving a matching layer between the metal and the lubricant enables accurate ultrasonic viscosity measurements [1] Schirru, M., Mills, R., Dwyer-Joyce, R., Smith, O., and Sutton, M. (2015). Viscosity Measurement in a Lubricant Film Using an Ultrasonically Resonating Matching Layer. Tribology Letters, 60(3) pp. 1–11. [CrossRef], [Web of Science ®] . This technique has been used to build a miniaturized ultrasonic viscometer that is accommodated inside a journal to obtain the circumferential viscosity profile. Four viscosity regions are identified due to the variations in the localized temperatures and loads. The results are compared with the isothermal solution of the Reynolds equations for hydrodynamic lubricated bearings. The ultrasonic viscometer locates the angle at which the maximum load occurs and the length of the loaded contact with good accuracy. Finally, the viscosity results are used to estimate the frictional power losses. It is shown that over 70% of the total losses in the journal bearing occur in the region where the load is maximum

    Space Debris Detection in Low Earth Orbit with the Sardinia Radio Telescope

    Get PDF
    Space debris are orbiting objects that represent a major threat for space operations. The most used countermeasure to face this threat is, by far, collision avoidance, namely the set of maneuvers that allow to avoid a collision with the space debris. Since collision avoidance is tightly related to the knowledge of the debris state (position and speed), the observation of the orbital debris is the key of the problem. In this work a bistatic radar configuration named BIRALET (BIstatic RAdar for LEO Tracking) is used to detect a set of space debris at 410 MHz, using the Sardinia Radio Telescope as the receiver antenna. The signal-to-noise ratio, the Doppler shift and the frequency spectrum for each debris are reported

    Predictive value of VEGF gene polymorphisms for metastatic colorectal cancer patients receiving first-line treatment including fluorouracil, irinotecan, and bevacizumab

    Get PDF
    The aim of this study is to evaluate the influence of germline vascular endothelial growth factor (VEGF) gene polymorphisms (VGPs) on the efficacy of the anti-VEGF antibody bevacizumab (Bev) in metastatic colorectal cancer (MCRC) patients

    Robot localization in water pipes using acoustic signals and pose graph optimization

    Get PDF
    One of the most fundamental tasks for robots inspecting water distribution pipes is localization, which allows for autonomous navigation, for faults to be communicated, and for interventions to be instigated. Pose-graph optimization using spatially varying information is used to enable localization within a feature-sparse length of pipe. We present a novel method for improving estimation of a robot’s trajectory using the measured acoustic field, which is applicable to other measurements such as magnetic field sensing. Experimental results show that the use of acoustic information in pose-graph optimization reduces errors by 39% compared to the use of typical pose-graph optimization using landmark features only. High location accuracy is essential to efficiently and effectively target investment to maximise the use of our aging pipe infrastructure

    Toward the renal vesicle: Ultrastructural investigation of the cap mesenchyme splitting process in the developing kidney

    Get PDF
    Background: A complex sequence of morphogenetic events leads to the development of the adult mouse kidney. In the present study, we investigated the morphological events that characterize the early stages of the mesenchymal-to-epithelial transition of cap mesenchymal cells, analyzing in depth the relationship between cap mesenchymal induction and ureteric bud (UB) branching. Design and methods: Normal kidneys of newborn non-obese diabetic (NOD) mice were excised and prepared for light and electron microscopic examination. Results: Nephrogenesis was evident in the outer portion of the renal cortex of all examined samples. This process was mainly due to the interaction of two primordial derivatives, the ureteric bud and the metanephric mesenchyme. Early renal developmental stages were initially characterized by the formation of a continuous layer of condensed mesenchymal cells around the tips of the ureteric buds. These caps of mesenchymal cells affected the epithelial cells of the underlying ureteric bud, possibly inducing their growth and branching. Conclusions: The present study provides morphological evidence of the reciprocal induction between the ureteric bud and the metanephric mesenchyme showing that the ureteric buds convert mesenchyme to epithelium that in turn stimulates the growth and the branching of the ureteric bud

    Vitamin D responsive elements within the HLA-DRB1 promoter region in Sardinian multiple sclerosis associated alleles

    Get PDF
    Vitamin D response elements (VDREs) have been found in the promoter region of the MS-associated allele HLA-DRB1*15:01, suggesting that with low vitamin D availability VDREs are incapable of inducing *15:01 expression allowing in early life autoreactive T-cells to escape central thymic deletion. The Italian island of Sardinia exhibits a very high frequency of MS and high solar radiation exposure. We test the contribution of VDREs analysing the promoter region of the MS-associated DRB1 *04:05, *03:01, *13:01 and *15:01 and non-MS-associated *16:01, *01, *11, *07:01 alleles in a cohort of Sardinians (44 MS patients and 112 healthy subjects). Sequencing of the DRB1 promoter region revealed a homozygous canonical VDRE in all *15:01, *16:01, *11 and in 45/73 *03:01 and in heterozygous state in 28/73 *03:01 and all *01 alleles. A new mutated homozygous VDRE was found in all *13:03, *04:05 and *07:01 alleles. Functionality of mutated and canonical VDREs was assessed for its potential to modulate levels of DRB1 gene expression using an in vitro transactivation assay after stimulation with active vitamin D metabolite. Vitamin D failed to increase promoter activity of the *04:05 and *03:01 alleles carrying the new mutated VDRE, while the *16:01 and *03:01 alleles carrying the canonical VDRE sequence showed significantly increased transcriptional activity. The ability of VDR to bind the mutant VDRE in the DRB1 promoter was evaluated by EMSA. Efficient binding of VDR to the VDRE sequence found in the *16:01 and in the *15:01 allele reduced electrophoretic mobility when either an anti-VDR or an anti-RXR monoclonal antibody was added. Conversely, the Sardinian mutated VDRE sample showed very low affinity for the RXR/VDR heterodimer. These data seem to exclude a role of VDREs in the promoter region of the DRB1 gene in susceptibility to MS carried by DRB1* alleles in Sardinian patients

    Observing galaxy clusters and the cosmic web through the Sunyaev Zel'dovich effect with MISTRAL

    Full text link
    Galaxy clusters and surrounding medium, can be studied using X-ray bremsstrahlung emission and Sunyaev Zel'dovich (SZ) effect. Both astrophysical probes, sample the same environment with different parameters dependance. The SZ effect is relatively more sensitive in low density environments and thus is useful to study the filamentary structures of the cosmic web. In addition, observations of the matter distribution require high angular resolution in order to be able to map the matter distribution within and around galaxy clusters. MISTRAL is a camera working at 90GHz which, once coupled to the Sardinia Radio Telescope, can reach 12′′12'' angular resolution over 4′4' field of view (f.o.v.). The forecasted sensitivity is NEFD≃10−15mJysNEFD \simeq 10-15mJy \sqrt{s} and the mapping speed is MS=380′2/mJy2/hMS= 380'^{2}/mJy^{2}/h. MISTRAL was recently installed at the focus of the SRT and soon will take its first photons.Comment: To appear in Proc. of the mm Universe 2023 conference, Grenoble (France), June 2023, published by F. Mayet et al. (Eds), EPJ Web of conferences, EDP Science

    Mass measurements of As, Se and Br nuclei and their implication on the proton-neutron interaction strength towards the N=Z line

    Get PDF
    Mass measurements of the nuclides 69As, 70,71Se, and 71Br, produced via fragmentation of a 124Xe primary beam at the Fragment Separator (FRS) at GSI, have been performed with the multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) of the FRS Ion Catcher with an unprecedented mass resolving power of almost 1000000. Such high resolving power is the only way to achieve accurate results and resolve overlapping peaks of short-lived exotic nuclei, whose total number of accumulated events is always limited. For the nuclide 69As, this is the first direct mass measurement. A mass uncertainty of 22 keV was achieved with only ten events. For the nuclide 70Se, a mass uncertainty of 2.6 keV was obtained, corresponding to a relative accuracy of δm/m=4.0×10−8, with less than 500 events. The masses of the nuclides 71Se and 71Br have been measured with an uncertainty of 23 and 16 keV, respectively. Our results for the nuclides 70,71Se and 71Br are in good agreement with the 2016 Atomic Mass Evaluation, and our result for the nuclide 69As resolves the discrepancy between the previous indirect measurements. We measured also the mass of the molecule 14N15N40Ar (A=69) with a relative accuracy of δm/m=1.7×10−8, the highest yet achieved with an MR-TOF-MS. Our results show that the measured restrengthening of the proton-neutron interaction (δVpn) for odd-odd nuclei along the N=Z line above Z=29 (recently extended to Z=37) is hardly evident at the N−Z=2 line, and not evident at the N−Z=4 line. Nevertheless, detailed structure of δVpn along the N−Z=2 and N−Z=4 lines, confirmed by our mass measurements, may provide a hint regarding the ongoing ≈500 keV discrepancy in the mass value of the nuclide 70Br, which prevents including it in the world average of Ft value for superallowed 0+→0+β decays. The reported work sets the stage for mass measurements with the FRS Ion Catcher of nuclei at and beyond the N=Z line in the same region of the nuclear chart, including the nuclide 70Br.peerReviewe

    Exploration of an innovative ranging method for bi-static radar, applied in LEO Space Debris surveying and tracking

    Get PDF
    Space Situational Awareness (SSA) is referred as one of the capacitive areas of strategic interest to be developed/completed in the future in the short and medium term, for any nation with the target of the access to the space. One of the fundamental components is the Space Surveillance and Tracking (SST) program, considered as the capability to build a spatial mapping of the objects in orbit, their classification and the exact identification of their orbital characteristics. For this reason, radar measurements are relevant, in particular to observe objects in Low Earth Orbit. The Italian National Institute of Astrophysics together with Vitrociset company and Politecnico di Milano, studied and developed a new and innovative method for the range measure applied to bi-static radars to support the European Union Space Surveillance and Tracking (EUSST) program. Several tests have been carried out using the BIRALES and BIRALET sensors for survey and tracking observations respectively. Finally, the results obtained from observations have been compared with the real positions of the targets in order to validate the system. The ranging method relies on the synchronization of the transmitting and receiving antennas and on the correlation of the echo received from the scattering of the orbiting object. To do that, the transmitting antenna emits simultaneously two different signals: a Chirp signal for range measurement and a second “Continuous Wave” (CW) for Doppler shift measurement and object track reconstruction. Overall, we simultaneously obtain time profiles for range, angular position (azimuth and elevation), and Doppler during the passage of the objects inside the sensor Field of View. By virtue of the above plethora of measurements, this method guarantees also the possibility to produce an Initial Orbital Determination (IOD) for unknown objects
    • …
    corecore