170 research outputs found

    Energy- and temperature-dependent transport of integral proteins to the inner nuclear membrane via the nuclear pore

    Get PDF
    Resident integral proteins of the inner nuclear membrane (INM) are synthesized as membrane-integrated proteins on the peripheral endoplasmic reticulum (ER) and are transported to the INM throughout interphase using an unknown trafficking mechanism. To study this transport, we developed a live cell assay that measures the movement of transmembrane reporters from the ER to the INM by rapamycin-mediated trapping at the nuclear lamina. Reporter constructs with small (<30 kD) cytosolic and lumenal domains rapidly accumulated at the INM. However, increasing the size of either domain by 47 kD strongly inhibited movement. Reduced temperature and ATP depletion also inhibited movement, which is characteristic of membrane fusion mechanisms, but pharmacological inhibition of vesicular trafficking had no effect. Because reporter accumulation at the INM was inhibited by antibodies to the nuclear pore membrane protein gp210, our results support a model wherein transport of integral proteins to the INM involves lateral diffusion in the lipid bilayer around the nuclear pore membrane, coupled with active restructuring of the nuclear pore complex

    Dominant gain-of-function mutations in Hsp104p reveal crucial roles for the middle region

    Get PDF
    Heat-shock protein 104 (Hsp104p) is a protein-remodeling factor that promotes survival after extreme stress by disassembling aggregated proteins and can either promote or prevent the propagation of prions (protein-based genetic elements). Hsp104p can be greatly overexpressed without slowing growth, suggesting tight control of its powerful protein-remodeling activities. We isolated point mutations in Hsp104p that interfere with this control and block cell growth. Each mutant contained alterations in the middle region (MR). Each of the three MR point mutations analyzed in detail had distinct phenotypes. In combination with nucleotide binding site mutations, Hsp104p(T499I) altered bud morphology and caused septin mislocalization, colocalizing with the misplaced septins. Point mutations in the septin Cdc12p suppressed this phenotype, suggesting that it is due to direct Hsp104p–septin interactions. Hsp104p(A503V) did not perturb morphology but stopped cell growth. Remarkably, when expressed transiently, the mutant protein promoted survival after extreme stress as effectively as did wild-type Hsp104p. Hsp104p(A509D) had no deleterious effects on growth or morphology but had a greatly reduced ability to promote thermotolerance. That mutations in an 11-amino acid stretch of the MR have such profound and diverse effects suggests the MR plays a central role in regulating Hsp104p function

    Subunit interactions influence the biochemical and biological properties of Hsp104

    Get PDF
    Point mutations in either of the two nucleotide-binding domains (NBD) of Hsp104 (NBD1 and NBD2) eliminate its thermotolerance function in vivo. In vitro, NBD1 mutations virtually eliminate ATP hydrolysis with little effect on hexamerization; analogous NBD2 mutations reduce ATPase activity and severely impair hexamerization. We report that high protein concentrations overcome the assembly defects of NBD2 mutants and increase ATP hydrolysis severalfold, changing V(max) with little effect on K(m). In a complementary fashion, the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate inhibits hexamerization of wild-type (WT) Hsp104, lowering V(max) with little effect on K(m). ATP hydrolysis exhibits a Hill coefficient between 1.5 and 2, indicating that it is influenced by cooperative subunit interactions. To further analyze the effects of subunit interactions on Hsp104, we assessed the effects of mutant Hsp104 proteins on WT Hsp104 activities. An NBD1 mutant that hexamerizes but does not hydrolyze ATP reduces the ATPase activity of WT Hsp104 in vitro. In vivo, this mutant is not toxic but specifically inhibits the thermotolerance function of WT Hsp104. Thus, interactions between subunits influence the ATPase activity of Hsp104, play a vital role in its biological functions, and provide a mechanism for conditionally inactivating Hsp104 function in vivo

    The epigenetics of nuclear envelope organization and disease

    Get PDF
    • …
    corecore