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Abstract 

Lamin-associated polypeptides (LAPs) comprise inner nuclear membrane proteins 

tightly associated with the peripheral lamin scaffold as well as proteins forming stable 

complexes with lamins in the nucleoplasm. The involvement of LAPs in a wide range 

of human diseases may be linked to an equally bewildering range of their functions, 

including sterol reduction, histone modification, transcriptional repression, and Smad- 

and β-catenin signaling. Many LAPs are likely to be at the center of large multi-

protein complexes, components of which may dictate their functions, and a few LAPs 

have defined enzymatic activities. Here we discuss the definition of LAPs, review 

their many binding partners, elaborate their functions in nuclear architecture, 

chromatin organization, gene expression and signaling, and describe what is currently 

known about their links to human disease. 

 

Introduction 

The eukaryotic nucleus is a complex organelle with essential functions in genome 

stability, DNA replication and gene expression. It is structurally and functionally 

organized into distinct sub-compartments, most prominently the nuclear envelope 

(NE), which separates nuclear and cytoplasmic activities. The NE is comprised of 

three major structures (Fig. 1) [1,2]: i) two concentric membrane layers, the outer 

(ONM) and the inner (INM) nuclear membrane facing the cytoplasm and 

nucleoplasm, respectively, and separated by the perinuclear lumen; ii) nuclear pore 

complexes (NPCs) inserted into the double membrane, which mediate nucleo-

cytoplasmic exchange of components, and iii) the nuclear lamina protein meshwork 

that is tightly associated with the INM and provides mechanical stability.  The ONM 

is directly linked to and functionally related to the endoplasmic reticulum (ER) and 



thus contains ribosomes and other ER proteins. Yet a subset of ONM proteins is 

unique and not shared with the ER. The INM (although joined with the ONM at 

NPCs) contains its own unique group of integral membrane proteins that selectively 

and efficiently target to the INM [3,4]. Many of these INM proteins are components 

of the nuclear lamina, the core of which is formed by the nuclear-specific, type V 

intermediate filament lamin proteins. Details of lamins are covered elsewhere in this 

issue; however, critical to this review is that there are different lamin subtypes: B-type 

lamins expressed throughout development, and A-type lamins found predominantly in 

differentiated cells [5,6]. Lamins are post-translationally modified by farnesylation 

[7]. B-type lamins are permanently farnesylated and thus tightly associated with the 

INM, in contrast with A-type lamins that either are not farnesylated at all or have the 

farnesyl group removed by an additional post-translational proteolytic cleavage of the 

C-terminal 15 residues. The transient farnesylation of lamin A may facilitate its 

incorporation into the lamina, but after cleavage it should be less tightly associated 

with the membrane and accordingly, a subfraction of lamin A (estimated at ~5 to 

10%) can also be found in the nuclear interior [8]. Multiple stable interactions of 

lamins with INM proteins within the nuclear lamina are fundamental for the 

mechanical integrity of the NE. This review focuses on mammalian lamin-associated 

proteins, most of which are components of the NE and the lamina. We attempt to 

resolve confusion between the terms lamin-versus lamina-associated polypeptides, 

which have been synonymously used in literature, and describe interactions, dynamics 

and potential functions of the best studied lamin-associated polypeptides in mammals, 

as well as their potential involvement in human diseases.    

 

Definition of LAPs as lamin-associated polypeptides 



The term LAP was originally used to designate “lamina-associated polypeptides”, 

INM proteins stably associated with the lamina at the nuclear periphery. These 

proteins bound lamins and cofractionated with lamins upon extraction with buffers 

containing high concentrations of monovalent salts and non-ionic detergents [9,10]. 

As the lamina is restricted to the nuclear periphery, LAPs by this definition are 

located at the NE. However, thereafter the term LAP has also been used for lamin-

associated polypeptides, including proteins associated with the ~5% of lamins not 

located at the nuclear periphery. As the intranuclear lamins are presumably not 

assembled into a filamentous structure like in the lamina, epitopes may be accessible 

in nucleoplasmic lamins that are masked in filaments and thus enable interactions 

with a different set of binding partners. In both cases, however, the term “associated” 

is meant to indicate a stable or protracted interaction with lamins or lamin complexes 

biochemically defined by resistance to extraction with salt and detergent. In contrast 

proteins that interact with lamins transiently upon activation of specific signaling 

pathways or during the cell cycle or differentiation would be referred to as lamin-

interacting polypeptides. In this review we use the more general definition of LAPs 

defining proteins stably associated with peripheral and internal lamin complexes. One 

aspect of this biochemical definition of LAPs is that the interaction with lamins can 

also be indirect. A LAP could bind another LAP that binds to lamins and still resist 

the harsh extraction conditions.  

 

Clearly defined LAPs 

LAP1 and LAP2 (now known as LAP2β) were identified by monoclonal antibodies 

generated against lamina-enriched fractions of rat liver nuclei [9,10]. Both proteins 

were determined to be integral membrane proteins by biochemical means and to 



reside at the NE and INM by immunofluorescence and immunogold electron 

microscopy. Moreover, they bound lamins in vitro. Thus LAPs 1 and 2 have all the 

characteristics of the most stringent definition of a LAP, although they showed quite 

different extractabilities at different salt concentrations [9]. The antibody to LAP1 

recognized three proteins designated LAP1A, B and C, and cloning of LAP1C [11] 

indicated that these forms are derived by alternative splicing and expressed in a 

developmentally regulated manner. Co-precipitation confirmed binding of LAP1C to 

lamin B [12], but the other LAP1 variants have not been analyzed further. Analysis of 

the human genomic sequence indicates that the LAP1 gene may have a plenitude of 

splice variants but this has not been followed up yet.  

Much more has been revealed on the LAP2 proteins since their initial 

identification. Cloning of the rat, mouse and human cDNAs and genes [13,14,15,16] 

identified 6 alternatively spliced isoforms LAP2α, β, γ, δ, ε, and ζ, all of which, 

except for LAP2α and ζ, contain a single C-terminal transmembrane domain and a 

long nucleoplasmic N-terminus [17]. The first described LAP2 antibodies recognized 

only LAP2β, the largest transmembrane LAP2 that binds preferentially lamin B 

[9,18]. The smaller isoforms, which lack specific regions in the nucleoplasmic 

domain, have yet to be tested for their lamin binding activity. LAP2α is unique, as it 

shares only the N-terminal third with the other isoforms and contains a distinct large 

C-terminus without a transmembrane domain. Accordingly LAP2α localizes to the 

nuclear interior [19], where it forms stable complexes with A-type lamins [20]. 

Although LAP2α is resistant to detergent/salt extraction [19] and binds lamins it 

clearly is not a lamina-associated protein as it is not part of the peripheral lamina. It 

represents an example of a lamin-associated protein that forms stable and protracted 

complexes with lamins outside the lamina.  



Database searches have revealed a 40 amino acid-long motif of two helices 

[21] termed the LEM domain (for LAP2, Emerin and MAN1) that is shared by LAP2 

isoforms, MAN1, emerin [22,23], LEM2/NET25 [24,25], and three uncharacterized 

proteins LEM3-5 in mammals [26]. The LEM domain binds the chromatin protein 

BAF (Barrier to autointegration Factor; [27,28,29]. Although LEM-domain proteins 

have no sequence similarity outside the LEM domain and contain different numbers 

of predicted transmembrane domains, all tested localize to the NE and bind lamins 

[24,30,31,32,33]. Moreover, emerin [34,35] and LEM2 [24] require A-type lamins for 

localization in the INM.   

The lamin B-receptor (LBR) is another well-studied INM protein, identified 

by a biochemical screen for lamin-binding proteins in a lamin-depleted NE fraction 

[36]. LBR preferentially bound to lamin B over lamin A, was shown to have similar 

resistance to extraction with 0.1 M NaOH or 8 M urea, and antibodies yielded nuclear 

rim staining. LBR is solubilized only in highly stringent conditions and can thus also 

be considered a lamina-associated polypeptide. Cloning and further analyses have 

shown that LBR is a polytopic protein with eight potential transmembrane domains 

[37]. 

 Since these initial studies on LAPs 1 and 2 and LBR, around 80 additional 

putative NE transmembrane proteins have been identified (reviewed in [4]). Almost 

all of the potential LAPs tested thus far have been shown to target to the NE and those 

that have passed the criteria for inclusion as LAPs are shown in Table 1.  

SUN1 [38,39,40] and SUN2 [41,42] are INM proteins containing a Sad1-UNC 

homology domain (SUN) that extends into the perinuclear space and interacts with 

ONM proteins termed nesprins [43,44]. The latter proteins form a huge family of 

isoforms encoded by three genes, Nesprin 1, 2, and 3, but many isoforms are localized 



on different cellular membranes, including mitochondria. Nevertheless, many of them 

target to the ONM and bind SUN domain proteins and some of them, such as nesprin 

2 isoforms even localize to the INM and bind lamins [45] or their localization 

depends on lamin A [46]. 

A caveat of the above-mentioned definition of LAPs is that NPCs co-isolate 

with the lamina fraction and share some biochemical characteristics with lamina 

components. GP190/POM121, GP210, and NDC1/NET3 were also shown to localize 

to the NE, were resistant to extraction with Triton X-100, and were retained in 

membrane vesicles in the presence of chaotropes [47,48,49]. Yet these would not be 

considered LAPs because they are integral proteins of the NPC. 

 

LAPs function as assembly points for multi-protein complexes 

Most LAPs have been characterized in terms of their interactions. An LBR-complex 

was found in chicken erythrocytes that contains an LBR-specific kinase, p32, and an 

18 kDa protein of the INM and ONM [50,51,52]. A second LBR complex has at its 

core an interaction with heterochromatin protein 1 alpha and gamma (HP1; [53,54]) 

and also contains histones H3/H4 [55] and epigenetically marked heterochromatin 

[56]. Interactions within this complex are likely epigentically regulated, as histone 

deacetylase inhibitors impaired the transient accumulation of microinjected HP1 at 

the NE [57]. 

A multitude of interactions have also been found for LEM proteins: first is 

their interaction with the DNA- and histone-binding protein barrier to autointegration 

factor (BAF) [28,58] that has essential functions in chromatin organization and gene 

regulation [59]. Biochemical and structural studies have identified the LEM domain 

in LAP2β to mediate the interaction with BAF [27,29] and binding of BAF to other 



LEM proteins has been experimentally confirmed for MAN1 [32], emerin [31] and 

LAP2α [60]. Thus, all LEM domain proteins can bind chromatin via BAF. Moreover, 

some have additional interactions with chromatin. MAN1 has a second BAF-binding 

region outside its LEM domain [32] and a predicted DNA binding winged Helix C-

terminal domain [61]. A second LEM-like motif at the N-terminus of all LAP2 

proteins interacts with DNA [27] and LAP2β additionally binds DNA and chromatin 

protein HA95 via C-terminal isoform-specific regions [62,63].  

Furthermore, several LEM proteins have been found to bind to different 

regulatory proteins, including the transcriptional repressor germ cell-less [32,64], 

transcriptional repressor Btf [32,65], transcriptional regulator Lmo7 [66], splicing 

factor YT521-B [67], epigenetic modifier enzymes [68], and signaling molecules (see 

below), indicating that lamin-LAP complexes can serve as scaffold structures, 

regulating gene expression and signaling pathways.  

There is evidence that different LAP complexes may be segregated at the NE. 

LBR-lamin B-containing complexes are excluded from LEM protein-lamin A 

microdomains formed in LEM2 expressing cells [24]. Similarly a lamin mutant that 

redistributed lamin subtypes into distinct microdomains correspondingly redistributed 

LAPs known to bind each lamin subtype [69]. 

The fact that many LAP interaction partners were found in different cell types 

suggests that LAPs may have a wider range of binding partners that are tissue-

specific. Tissue-specific LAP-complex formation may be regulated by the availability 

of potential binding partners in a specific cell type, the relative abundance of both 

LAPs and binding partners, and their relative affinities (Fig. 2). Further evidence that 

some LAPs are at the center of large tissue-specific complexes comes from a recent 

study on epitope masking at the NE. Six different monoclonal antibodies to different 



epitopes of emerin were generated, each of which recognizes the protein by 

immunofluorescence in some cell types. However, none recognized emerin in spleen, 

even though it was clearly present by Western blot analysis [70] suggesting that all 

six epitopes are masked by binding partners. Such an extreme degree of epitope 

masking is consistent with the large number of identified binding partners that 

associate with distinct and/or overlapping regions of the emerin protein [71]. A 

parallel result was obtained for lamin B1. Three different lamin B1 antibodies were 

used to stain heart and hippocampus sections: one stained just cardiomyoctyes, 

another stained just hippocampus, and the third stained both [70]. As each antibody 

recognized a different region, different partners may occupy different binding sites in 

the different tissues. These data suggest that LAPs and lamins form large tissue-

specific multiprotein complexes, the perturbation of which may underlie tissue-

specific phenotypes in lamin-linked diseases (see below).  

 

LAP-complexes function in nuclear architecture  

Among the original LAPs studied, only one had a clearly determined enzymatic 

activity. The C-terminus of LBR is homologous to yeast sterol C-14 reductase 

(Erg24p; [72]) and the human gene can functionally complement a yeast Erg24p 

mutant [73]. All other functions reported for LAPs are structural ones involved in 

nuclear architecture and higher order chromatin organization, and in providing 

scaffolds for gene regulatory and signaling complexes (Fig. 3).   

Given the structural roles of cytoplasmic intermediate filament proteins, it is 

not surprising that their nuclear counterparts, the lamins together with LAPs are to a 

large extent providing mechanical support for the NE [69,74,75]. The relevance in 

nuclear architecture has been demonstrated for several LAPs. Lower expression levels 



of LBR, as seen in LBR-associated diseases affect nuclear shape and chromatin 

organization in blood granulocytes [76]. Emerin-deficient cells have normal structural 

integrity but impaired mechanotransduction [77] and knockdown of LEM2 leads to 

abnormally shaped nuclei [78]. Functional redundancy of LEM proteins in 

mammalian cells is most likely the reason for only mild phenotypes typically 

observed with single LEM-protein deficiencies. In C.elegans, only the simultaneous 

downregulation of the major LEM proteins, Ce-emerin and Ce-lem2 (formerly 

referred to as Ce-MAN1), caused severe chromatin organization phenotypes [79].  

A structural link between the nucleoskeleton and cytoskeleton across the NE is 

provided by the INM SUN domain proteins, which form dimers and interact with 

ONM nesprins that in turn associate with the cytoskeletal filament systems (Fig. 3; for 

review see [80]). In C. elegans these proteins were linked to nuclear positioning and 

migration [43]. Transgenic mice overexpressing a dominant negative nesprin/syne-1 

fragment exhibited impaired anchorage of nuclei at neuromuscular junctions [81], 

indicating that this function is evolutionarily conserved. The SUN-nesprin complex 

may also be involved in regulating the space between INM and ONM, since 

downregulation of SUN1 and 2 in HeLa cells caused detachment of the ONM and 

extension of the perinuclear space [38]. 

 

LAP-complexes function in chromatin organization 

Given the numerous interactions of LAPs with chromatin proteins and DNA, it is 

plausible that they are involved in higher order chromatin structure (Fig. 3). LBR 

interactions with heterochromatin determinants [54,56], and LEM protein interactions 

with the DNA-crosslinking BAF [59] argue for a role of LAPs in forming 

heterochromatic regions. In support of this LAP2β binds HDAC3 that mediates H4 



deacetylation [68], linked to heterochromatic, transcriptionally inactive genomic 

regions. Since most LEM proteins have been shown to bind BAF they may be 

functionally redundant. However, most of the other interaction partners of LEM-

domain proteins bind outside the conserved LEM domain, suggesting also 

considerable specificity in the functions of these proteins. 

LAP-chromatin interactions may also be important for nuclear assembly after 

mitosis. LBR is among the first proteins to assemble around sister chromatids in 

anaphase [82,83]. Its immunodepletion from cell lysates impaired in vitro NE 

assembly [84], suggesting that LBR is a key component for targeting membranes to 

chromosomes. LAP2β was suggested to be important for NE enlargement in G1 

phase, because LAP2β fragments in Xenopus nuclear assembly reactions [85] or 

microinjected into mitotic mammalian cells [86] blocked nuclear growth in G1-S-

phase. More recently, a basic domain in LAPs was suggested to mediate binding of 

INM proteins to negatively charged DNA during the initial docking of membranes 

[87]. This domain is a basic (pI > 8.5) nucleoplasmic region of more than 100 amino 

acid residues found in 46% of putative nuclear envelope proteins recently identified 

[25]. However, more specific targeting and assembly pathways have to be involved as 

well, since LBR and LAP2 bind different chromatin regions during assembly. LAP2α 

initially is targeted to telomeres in anaphase and further assembles to chromatin-

associated “core structures” in telophase [60]. The chromatin-bound core structures, 

located adjacent to the mitotic spindle, contain also emerin, LAP2β, and BAF, while 

LBR complexes bind equatorial regions of anaphase chromatin [60,83]. The 

complexes at the core regions were determined to be stable by FRAP (fluorescence 

recovery after photobleaching) [88] and important for NE assembly because emerin, 

LAP2α, and BAF mutants that disrupted LAP-BAF interactions failed to assemble 



NEs in vivo and in vitro [89,90].  

 

LAP-complexes function in gene expression and signaling 

LAPs may affect gene expression by epigenetic mechanisms and by binding to 

repressor proteins or sequestering transcription factors (Fig. 3). LAP2β binds the 

repressor germ cell less (gcl), which is known to affect E2F/DP transcription factor 

heterodimers [64]. Emerin also interacts with gcl [91], and with the repressor Btf [65]. 

The binding of LEM-domain proteins with BAF could similarly influence gene 

regulation, as BAF has been found to repress gene expression in retinal cells via 

binding to the homeodomain transcription factor Crx [92]. Furthermore, pull-down 

studies identified an emerin-binding transcription factor, Lim domain only (Lmo7), 

which controls the expression of emerin and many muscle specific genes [66]. Since 

overexpression of emerin inhibited Lmo7, the Lmo7-emerin interaction is tightly 

regulated by feedback pathways. Finally, LAP2α-lamin A complexes in the nuclear 

interior bind the tumor supressor retinoblastoma (Rb) [93], which is a negative 

regulator of E2F-dependent transcription controlling the balance between 

proliferation and differentiation [94]. Accordingly LAP2 can associate with E2F/Rb-

responsive promoters and impair expression of E2F-target genes upon cell cycle exit 

and differentiation [95].   

Novel data point towards a function of LAPs in signaling. Mammalian MAN1 

binds Receptor-Smads 2/3, downstream effectors of the TGFβ and bone morphogenic 

protein (BMP) signaling cascades [96]. MAN1 overexpression impaired Smad 2/3 

phosphorylation, heterodimerization (with Smad 4), and nuclear translocation - events 

that are linked to an active pathway – and thus antagonizes signaling [97]. Given the 

ubiquitous expression of MAN1, the physiological relevance of MAN1 in TGFβ and 



BMP signaling is unclear: MAN1 could either recruit and de-activate Smads as a 

mechanism to eliminate weak signals, or alternatively, MAN1 might have a major 

role in regulating Smad signaling only in a subset of tissues due to the presence of 

additional tissue-specific MAN1 binding partners. 

Emerin may also have signaling functions as it interacts with β-catenin, a dual 

function protein in cell-cell adhesion and transcriptional activation. Overexpression of 

emerin causes cytoplasmic accumulation of β-catenin, leading to the inhibition of its 

transcriptional activity. Conversely, emerin-null cells have increased nuclear, 

transcriptionally active β-catenin [98].   

 

How do INM LAPs reach their destination? 

In theory, for LAPs to access the INM they must either (1) diffuse laterally in the 

membrane around the outside of the NPCs; (2) bud off of the ONM as vesicles into 

the lumen of the NE, then fuse again with the INM; or (3) be removed from the ER 

membrane, maintained in a soluble form during transport through the NPC, and re-

inserted into the membrane inside the nucleus (Fig. 1). The latter two mechanisms 

would be energetically unfavorable and have little or no support in the literature. The 

first mechanism obtained its support initially from studies, in which fusions of the 

nucleoplasmic region of LBR to the membrane-spanning segment of a ER/plasma 

membrane protein resulted in its targeting to the INM [99], while inserting an 

increasing mass of protein between the LBR nucleoplasmic region and the 

transmembrane segment resulted in the fusion protein no longer being able to access 

the INM [100]. It was proposed that the limited space between the membrane and the 

body of the NPC would set a size limit for the diffusion of the nucleoplasmic region 

in the membrane. Once in the nucleus, the nucleoplasmic LBR domain could be 



retained in the NE by binding to lamin B [101] and become immobile as shown by 

FRAP analysis [82]. 

More recent studies have demonstrated that transport is more complex, 

involving an energy-dependent gated mechanism. Ohba and colleagues developed a 

system for testing inducible INM accumulation of a protein [102].  They fused the 

LAP2β membrane-spanning segment to both GFP and FRB, and fused the lamin-

binding LAP2β nucleoplasmic region to FKBP. Upon addition of rapamycin, FRB 

binds to FKBP so that the lamin-binding region of LAP2β fuses to the integral 

membrane component. In agreement with the lateral diffusion-retention model, the 

membrane-spanning piece diffused at equilibrium between the ER and INM in the 

absence of rapamycin, but rapidly accumulated in the INM upon rapamycin addition. 

Unexpectedly, temperature and ATP-depletion significantly reduced accumulation 

while inhibitors of vesicle fusion and of soluble transport across the NPC had no 

deleterious effect. These data strongly argue against vesicle fusion and soluble 

transport mechanisms, but support an active, energy-dependent transport along the 

membrane. A recent study in yeast reports the presence of nuclear localization 

sequences (NLS) in INM protein orthologues, which are essential for their transport 

into the nucleus via a karyopherin- and Ran-GTPase dependent pathway [103]. It 

remains to be seen whether karyopherin and Ran-GTPase mediate a gated in-

membrane lateral diffusion indicated for mammalian systems, or whether this 

represents a distinct mechanism.   

 

Impairment of LAP functions gives rise to human diseases 

Mutations in lamins, particularly the LMNA gene, were linked to a hetergeneous 

group of diseases, collectively termed laminopathies, that affect tissues ranging from 



muscle to fat, bone, and skin [104,105]. The molecular mechanism for how missense 

mutations in lamins give rise to the diverse phenotypes is poorly understood, but may 

involve disruption of functional protein complexes associated on LAPs [106]. This is 

supported by the observation that mutations in some LAP genes also give rise to 

laminopathy-type diseases.  

Emerin mutations cause the X-linked form of Emery-Dreifuss Muscular 

Dystrophy (EDMD), characterized by progressive muscle wasting, shortening of 

tendons, and heart and conduction system defects [23,107]. Most disease-causing 

mutations result in reduced levels of emerin [108]. When expressed, several mutants 

of emerin (S54F, P183H, P183T, and Del95-99) mislocalized to the cytoplasm [109]. 

Intriguingly, mutations in lamin A cause the autosomal type of EDMD [110] and 

similarly, the expression of some of these lamin A mutants (L85R, N195K, E358K, 

M371K, R386K, R453W, W520S, and R527P) also resulted in mislocalization of 

emerin [111]. This suggests that functional lamin-emerin complexes are lost by 

mutations in either protein. The disease-relevant functions of this complex are 

unknown, but gene-expression profiling on muscle biopsies from patients [112] and 

on emerin deficient mouse cells [113] suggest a defect in the Rb1-MyoD pathway, 

involved in muscle differentiation.  

 LAP2α is linked to a laminopathy-type dilated cardiomyopathy, and loss of 

LAP2α-lamin A binding was observed for the mutated protein in vitro [114]. This 

finding again argues that disease-causing mutations in lamin A and LAP2α impair the 

functions of the nucleoplasmic complex. Because LAP2α can regulate Rb function 

during differentiation [95], it was proposed that mutations in LAP2α may affect the 

differentiation of adult muscle stem cells, which may impair homeostasis and 

regeneration of heart muscle tissues in patients [106]. 



 Heterozygous loss-of-function mutations in MAN1 cause osteopoikilosis, 

Buschke-Ollendorff syndrome and melorheostosis, characterized by increased bone 

density [115]. The pathological phenotype may be caused by impairment of MAN1 

function in Smad signaling, which is important for bone development. Accordingly, 

mutated MAN1 was unable to antagonize Smad signaling like the wild type, and 

TGFβ/ Smad-responsive genes were upregulated in patient fibroblasts versus controls. 

 Heterozygous LBR mutations mostly resulting in reduced protein levels cause 

Pelger-Huet anomaly (PHA), an autosomal dominant syndrome characterized by 

abnormal nuclear shape and chromatin organization in blood granulocytes [76]. 

Homozygous individuals lacking LBR have varying degrees of developmental delays, 

epilepsy and skeletal abnormalities. LBR is also linked to autosomal recessive 

Greenberg’s skeletal dysplasia, characterized by lethal skeletal and visceral anomalies 

[116]. It is unclear, to what extent the loss of LBR sterol reductase activity or the 

impairment of LBR chromatin-organizing function contributes to the phenotype. 

 Nesprin/Syne-1 (SYNE1) is associated with autosomal-recessive cerebellar 

ataxia [117], characterized by impaired walking due to a lack of coordination of gait 

and limbs. Since a brain-specific Nesprin/Syne-1 splice variant localizes to the 

postsynaptic endocytotic zone of excitatory synapses, mutations may disrupt 

glutamate receptor turnover and function. Thus, this disease is likely not caused by 

defects in nuclear specific functions of Nesprin/Syne-1. 

 Finally, LAP1 has recently been linked to primary dystonia, a CNS-based 

autosomal-dominant movement disorder caused by mutations in the AAA+ATPase 

torsin A.  Normally, ATP bound torsin A is recruited to the NE by LAP1, while ATP-

free torsin A is in the ER lumen. Disease-causing mutated torsin A is stably bound to 

LAP1 in the NE [118,119]. As a dilation of the perinuclear space was observed in 



patients, torsin accumulation may affect nuclear architecture, but it could also 

interfere with yet unknown functions of LAP1.  

 

Concluding comments and future directions 

Although we have much to discover about the functions of LAPs, their involvement 

in such a wide range of human diseases indicates that these functions are critical.  The 

plethora of functions already uncovered range from the mechanical integrity of the 

nucleus to genome organization and regulation of signaling. It will be essential in the 

future to identify and analyze tissue-specific LAP complexes and their functions.  
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Figure Legends: 

 Figure 1.  

 

Schematic representation of the nuclear envelope and potential transport mechanisms 

of membrane proteins to the inner nuclear membrane: the nuclear envelope (NE) is 



comprised of a double membrane system of outer (ONM) and inner (INM) nuclear 

membranes. The ONM is continuous with the endoplasmic reticulum (ER). Several 

integral membrane proteins are embedded in both ONM and INM. Many of those in 

the INM physically interact with the lamin polymer that underlies the INM (LAP, 

Lamina-associated polypeptides). Nuclear pore complexes (NPC) perforate the 

nuclear membrane where ONM and INM join and appear to be involved both in 

transport of soluble factors between the nucleus and cytoplasm through their inner 

channel and in transport of INM LAPs on their outer face. INM proteins may diffuse 

laterally along the membrane from the ER to the INM in an energy-dependent manner 

and are retained by interaction with the lamina (pathway 1). In theory, alternative 

pathways for INM protein transport into the nucleus include budding off of vesicles 

with the protein from the ONM and fusion with the INM (pathway 2); or release of 

the INM protein from ER membranes, transport through NPC by classical transport 

pathways and insertion into the INM (pathway 3). Pathways 2 and 3, however, are 

energetically unfavorable and have little or no support in the literature.  

 



Figure 2.  

 

Abundantly expressed LAPs can form tissue-specific complexes with different 

functions through (i) the availability of specific binding partners in specific tissues, 

(ii) the relative abundance of partners in tissues, and (iii) distinct binding affinities of 



partners. TM, transmembrane domain; A-D, LAP binding partners; number of 

connecting lines denote binding strength.  

 



Figure 3.  

 

Functions of LAP complexes: Lamin A/C-associated emerin, MAN1 (may also bind 

lamin B), and LEM 2 interact with BAF and may be involved in chromatin 



organization. Lamin B-associated LAP2β and LBR bind BAF and HP1, respectively 

and provide anchors for compacted heterochromatin (with H3K9-trimethyl marks). 

LAP2β also binds histone deacetylase HDAC3, which contributes to heterochromatin 

formation. Both types of complexes are also involved in nuclear architecture. SUN-

dimer/Nesprin complexes, interacting in the perinuclear space via their SUN and 

KASH domains, respectively, provide the link between the lamina and cytoplasmic 

actin and intermediate filaments (via plectin). In addition, emerin binds to the 

transcriptional repressors gcl and Btf and the transcription factor Lmo7, and LAP2β 

to gcl, and BAF to cone-rod homeobox protein Crx. Thus, these proteins may be 

involved in the regulation of gene expression. MAN1 antagonizes TGFβ signaling by 

binding Smads, and emerin binds to and impairs β-catenin transcriptional activity. 

Finally, nucleoplasmic lamin A/C-LAP2α complexes bind to BAF and Rb and thus 

affect chromatin organization and E2F/Rb and Rb/MyoD pathways, respectively. 

LAP2β may also affect the Rb pathway via gcl.  

 

 



Table 1 — Properties described for LAPs 
 
LAPs NE 

targeting 
Integral 
membrane 
protein 

Triton-
resistant 

Lamin 
binding 

Other 
LAP 
binding 

Lamins 
affect 
targeting 

LAPs at the nuclear 
periphery 

      

LAP1 + [10] + [10] + [10] A,B [9]  + [120] 
LBR + [36] + [36] + [36] B [36]  + 

[99,101] 
LAP2β + [9] + [9] + [9] B [9]  + [18] 
Emerin + [23] + [41] + [23] A 

[30,33,109] 
MAN1 
[32], 
Nesprin-
1-alpha 
[121], 
Nesprin-2 
[45] 

+ 
[34,122] 

MAN1 + [123] + [22] + [123] A,B [32] Emerin 
[32] 

+ [124] 

Nurim + [125] + [41] + [125] nt*  nt 
UNCL + [126] + [126]  + [126] nt  nt 
Syne/Myne/Nesprin-
1 

+ [127] + pred + [128] A [129] Emerin 
[121], 
SUN1 
[39] 

nt 

Syne/Nesprin-2 
alpha and beta 

+ {130] + pred + [45] A [45] Emerin 
[45], 
SUN1 
[39, 40] 

+ [45,46] 

Syne/Nesprin-2G** + [38] + pred nt nt SUN2 
[38] 

nt 

Nesprin-3/NET53** + [131] + [25] nt nt  nt 
Unc84A/SUN1 + [41] + [41] + [41] A [39]*** Nesprin 

1/2 
KASH 
domain 
[39, 40] 

- [38,39] 

SUN2 + [42] + [42] + [42] A [38] Nesprin 
2G [38] 

+ [38] 

LUMA + [41] + [41] + [41] nt  nt 
NET8 + [25] + pred + [25] nt  nt 
NET39 + [25] + [25] + [25] nt  nt 
NET51 + [25] + [25] + [25] nt  nt 
NET56 + [25] + pred + [25] nt  nt 
LEM2/NET25 + [24] + [24] + [24] A [24] LAP2-

alpha [24] 
+  [24] 

NET9 + [132] + pred + [132] nt  nt 
NET32 + [132] + pred + [132] nt  nt 
NET37 + [132] + [25] + [132] nt  nt 
Titin + 

[133]**** 
- [134] nt + [133,135]  nt**** 

Nup53 + [136] - [136] + [136] + [136]  nt 
SREBP-1 + [137] - [138] nt + [137,139]  + [137] 
c-Fos + [140] - [141] nt***** + [140]  + [140] 
       
LAPs in the 
nucleoplasm 

      



LAP2α - [19] - [16] + [19] A [20]  + [20] 
Lco1 - [142] - [142] nt****** + [142]  + [142] 
MOK2 - [143] - [144] + [145] + [145]  + [145] 
nt=not tested; pred=predicted. 
* It was suggested that nurim targets to the NE independent of lamin-binding as 
expressed protein failed to target to the NE in heterologous systems upon expression 
of lamins. However, only A-type lamins were tested and direct binding has yet to be 
examined. 
** Although not all Nesprin subtypes have been fully characterized yet, we define 
both proteins as LAPs, based on the properties reported for Nesprin-2 and the 
similarities between the two proteins. 
*** UNC84A was shown to bind lamins. However, NE localization of human 
UNC84A was recently shown to not depend upon binding to lamins [146]. 
**** In this study only a slight enrichment was observed at the NE for a fragment of 
human titin shown to bind lamins in a 2-hybrid screen [135], when fused to GFP 
[133]. However, this weak result was strengthened because in C. elegans the authors 
demonstrated a cell cycle-dependent strong targeting of Ce-titin to the NE that was 
dependent on lamins. 
***** Ectopic expression of lamin protected c-Fos from detergent solubilization, but 
NP-40 instead of Triton X-100 was used. 
****** Although resistance to Triton X-100 was not tested, binding affinity was high 
and reactions were performed in the presence of high salt; so a more stable interaction 
is indicated. 
 
 



Table 2 — LAPs linked to human diseases 
 
Mutated LAP Disease Phenotype Comments Reference 
Emerin Emery-Dreifuss 

muscular 
dystrophy 

Contractures of 
elbows, Achilles 
tendon, neck and 
spine. Progressive 
weakness in upper 
arms and lower 
limbs. Often 
associated with 
dilated 
cardiomyopathy. 

Other variants 
caused by lamin 
mutations 

[23,107,147] 

LAP2α Familial dilated 
cardiomyopathy 

Ventricular 
dilation and 
impaired cystolic 
function. Cardiac 
pump failure may 
occur after 
conduction 
abnormalities.  

Other variants 
caused by lamin 
mutations 

[114] 

LBR Pelger-Huet 
anomaly 

Neutrophil nuclei 
in heterozygotes 
have fewer 
segments and 
course chromatin, 
with no effects on 
normal health. 
Homozygotes 
have epilepsy and 
skeletal 
abnormalities. 

 [76] 

LBR Greenberg/HEM 
skeletal dysplasia 

Widespread tissue 
edema in fetus. 
Disorganized 
bone structure, 
short limbs and 
conversion of 
cartilage to bone. 
Early in utero 
lethality. 

 [116] 

MAN1/LEMD3 Buschke-
Ollendorff 
syndrome 

Skeletal defects 
include spots of 
increased bone 
density and 
sclerosis in a 
flowing pattern. 
Accompanied by 
joint contractures, 
skin lesions and 
muscle atrophy. 

 [115] 

Torsin A Torsion dystonia Prolonged, 
involuntary 
muscle 
contractions 
induce abnormal 
posture and 
twisting or 
repetitive 

TorsinA only 
accumulates at the 
NE when 
mutated, binds to 
LAP1 

[118, 119, 148] 



movements in 
arms and legs. 

SYNE1 Autosomal 
recessive 
cerebellar ataxia 

Impaired walking 
due to a lack of 
coordination of 
gait and limbs. 
Often also 
pyramidal 
features, 
peripheral 
neuropathy, 
cognitive loss or 
retinopathy. 

Mutation may 
affect a Syne 
variant not 
localized to the 
NE. 

[117] 

 


