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Abstract 

 Mammalian chromosomes and some specific genes have non-random positions 

within the nucleus that are tissue-specific and heritable.  Work in many organisms has shown 

that genes at the nuclear periphery tend to be inactive and altering their partitioning to the 

interior results in their activation.  Proteins of the nuclear envelope can recruit chromatin with 

specific epigenetic marks and can also recruit silencing factors that add new epigenetic 

modifications to chromatin sequestered at the periphery.  Together these findings indicate that 

the nuclear envelope is a significant epigenetic regulator.  The importance of this function is 

emphasized by observations of aberrant distribution of peripheral heterochromatin in several 

human diseases linked to mutations in NE proteins.  These debilitating inherited diseases 

range from muscular dystrophies to the premature aging progeroid syndromes and the 

heterochromatin changes are just one early clue for understanding the molecular details of 

how they work.  The architecture of the nuclear envelope provides a unique environment for 

epigenetic regulation and as such a great deal of research will be required before we can 

ascertain the full range of its contributions to epigenetics. 

 

 

Keywords: nuclear envelope; lamin; inner nuclear membrane protein; epigenetics; position 

effect; heterochromatin. 
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1. Introduction  

 Structurally, the nuclear envelope (NE) is a double membrane system continuous 

with the endoplasmic reticulum (ER) [1].  The outer nuclear membrane, like the ER, is 

studded with ribosomes yet also appears to contain some unique proteins (Fig. 1).  The 

membrane curves around the outside of the nuclear pore complexes (NPCs), which regulate 

directional transport of soluble macromolecules in and out of the nucleus [2].  The inner 

nuclear membrane (INM) contains a set of unique proteins and also some proteins common to 

other organellar membranes [3].  Directly underlying the membrane in higher eukaryotes (but 

not yeast) is a polymer of intermediate filament lamin proteins [4], which is connected to the 

membrane by several of the unique INM proteins (Fig. 1).  

 Functionally the NE first appeared over a billion years ago as the defining 

characteristic of eukaryotes.  The obvious importance of its barrier function, protecting the 

genetic contents of the cell from the wide-ranging enzymatic activities in the cytoplasm, 

precluded thoughts of additional functions for many years.  However, as for epigenetics, our 

view of the NE and its functions has evolved considerably in the past few years.  A 

mechanical stability role for lamins in nuclear shape was recently given strong experimental 

support in vivo [5-8].  Lamins and INM proteins can also influence replication [9-11], 

transcription [12-14] and signaling cascades [15-18].   

 The many links between the NE and gene regulation complicate the task of 

discerning its role in epigenetic regulation.  For example, in mammals, one characterized 

method of NE transcriptional regulation is sequestration of the retinoblastoma protein (pRb) 

by lamins: this prevents release of E2F-transcription factors from pRb, thus blocking 

activation of their targets.  This does not qualify as an epigenetic mechanism, but such NE 

functions could be the true mechanism behind an effect that is misinterpreted as gene 

silencing at the periphery.  Despite the many studies that will be discussed here, it remains 

unclear whether the nuclear envelope silences genes merely by bringing them into an 

environment rich with other silenced genes (position effect), by actively modifying peripheral 

chromatin to a silent configuration or by preferentially recruiting already silenced chromatin.  
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It is also unclear in most cases whether genes and/ or modifying factors are directly tethered 

to the NE or simply in the environment of the periphery.  Finally, it is important to keep in 

mind when thinking of these issues that while no data clearly demonstrate silencing through 

steric effects from tethering to the NE, no studies clearly show that this does not play a role in 

silencing. 

 

2. Gene Silencing at the Nuclear Periphery 

 Early studies of transcriptional activation in many organisms inferred a connection 

between inactive genes and the darker staining areas of dense chromatin observed under the 

electron microscope that was referred to as heterochromatin [19].  In particular the 

heterochromatin at the periphery of resting lymphocytes was noted to diminish upon 

activation [20].  Heterochromatin has now been re-defined in the context of epigenetics as 

inactive or silent chromatin based on histone and DNA modifications [21,22].  How well the 

denser chromatin observed by electron microscopy correlates with these epigenetic marks has 

not been investigated, but the amount of nucleic acid in the darker-staining chromatin is 

surprisingly variable [23], suggesting that in some cases the density is achieved with proteins.  

Dense chromatin is observed at centromeres and nucleoli in relatively standard amounts, 

while that at the NE has distinctive patterns and amounts in different cell types, suggesting 

that it may play a role in gene regulation throughout differentiation.   

 That chromatin is generally transcriptionally silent at the periphery was subsequently 

confirmed in a study that identified genes located at the periphery.  Genes in contact with 

lamins in Drosophila melanogaster tissue culture cells were isolated using a trick where 

lamins were fused to the Escherichia coli DNA adenine methyltransferase (DAM) and the 

uniquely methylated DNA in contact with lamins was isolated, labeled and used to probe 

whole-genome microarrays.  This revealed an enrichment of late replicating DNA lacking 

active histone modifications at the periphery [24].  This is consistent with previous 

observations that late-replicating DNA tends to be at the periphery from bromodeoxyuridine 

(BrdU) pulse chase experiments [25]. A subsequent study fusing DAM to Suppressor of 
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Under-Replication (SuUR), a Drosophila protein associated with heterochromatin, found 

considerable overlap with the genes identified as associating with lamins [26]. 

Co-immunoprecipitation of proteins associated with other abundant NE proteins 

further confirms the bias at the periphery for heterochromatin.  For example mass 

spectrometric analysis of chromatin associated with NPC protein nucleoporin 93 (Nup93) in 

yeast [27] and the INM protein lamin B-receptor (LBR) in mammalian cells [28] revealed 

principally heterochromatic/ silencing modifications. 

 

3. Translocation of Genes To and From the Nuclear Periphery 

3.1. Original studies in yeast 

 Although yeast do not have visible heterochromatin by electron microscopy, they 

provided the first molecular observations supporting NE silencing in that the Sir silencing 

proteins exhibited partial concentration in telomeric foci at the nuclear periphery [29,30].  

This followed on work showing that inserting genes close to yeast telomeres results in their 

silencing in a process involving Sir proteins [31,32].  Soon afterwards it was shown that 

tethering a reporter gene to a nuclear membrane protein resulted in silencing of the reporter 

[33].  Together these findings suggested a position effect model whereby targeting genes to 

the silencing factor-rich environment of the nuclear periphery results in their silencing.   

 Several focused studies in both yeast and mammalian cells on telomere tethering to 

the periphery appeared to support this model.  Ku and Mlp proteins in yeast were found to be 

required for peripheral telomere localization [34-36] and mutations in these proteins resulted 

in derepression of silenced genes [35,37,38].  The Mlp proteins are homologs of the 

mammalian Tpr, which is the outermost nucleoplasmic component of the NPC and gave the 

same effect when knocked down [36].  This resulted in speculation that silencing at the 

periphery might be specifically mediated by NPCs; however in yeast Sir4 interacts with a 

nuclear membrane protein Esc1 in areas that are distinct from telomeres [39], indicating that 

silencing is a general property of the periphery.   
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These studies also attempted to address the question of whether recruitment to the 

periphery silences chromatin in a heritable manner.  Derepression of reporters in yeast upon 

deletion of NPC proteins involved in tethering telomeres argued that silencing required 

NE/NPC association [35,38].  However, deletion of the NPC proteins also resulted in a 

redistribution of Sir3p fused to green fluorescent protein [38]; thus derepression could be due 

to secondary consequences of NPC disruption, rather than simply relocation away from the 

periphery.  Another report found that breaking the connection to the NE did not derepress the 

silent reporter [40], arguing that silencing results from changes to the reporter chromatin itself 

rather than being a consequence of the repressive environment of the periphery.  As each 

study used different artificial experimental systems, this question remains unanswered in 

yeast and it may differ in mammalian cells.   

3.2. Genes of higher eukaryotes undergo spatial regulation 

The yeast studies relied heavily on genetics and artificial reporters as the small size of 

the yeast nucleus does not allow high-resolution visual analysis.  The larger nucleus of higher 

eukaryotes enables high-resolution analysis of nuclear positioning/ re-positioning.  The 

relevance of nuclear positioning in gene regulation is underscored by observations of non-

random localization of endogenous genes in Drosophila and mammalian nuclei and the 

influence of localization on their activity.  In Drosophila several individual gene loci were 

observed to have conserved proximity to the NE [41].  Another interesting observation in 

Drosophila was that the suppressor of Hairy-wing [su(Hw)] protein that binds to the gypsy 

insulator and also the gypsy sequences themselves accumulate primarily at the nuclear 

periphery [42].  Insulators are DNA sequences that can protect a transgene from repression 

due to position effects if the transgene is inserted into a generally repressive environment.  At 

the same time they can also block activity of an enhancer when inserted between it and the 

gene it activates [43].  Thus they can insulate a gene from propagation of surrounding 

epigenetic marks.  The finding that gypsy and su(Hw) accumulate at the periphery was a 

major step in determining that NE positioning has a role in chromatin regulation. 
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In mammalian cells chromosomes achieve defined positions within the 3D-

framework of the nucleus: the relatively inactive gene-poor chromosome 18 tends to be 

located at the periphery while the much more active and gene-rich chromosome 19 tends to 

be internal [44].  Centromeres [45], and telomeres [46,47] have all been found at the NE in 

specific cell types and/ or cell cycle stages.   

The number of individual genes whose intranuclear position has been determined by 

FISH is quite limited, but some of those tested appear to be regulated in part by positioning at 

the periphery.  The immunoglobulin heavy chain IgH locus remains tethered to the nuclear 

periphery in early lymphocyte lineages but moves to the nuclear interior preceding the 

initiation of V(D)J recombination [48].  Among other genes regulated by peripheral 

association are the Mash1 (Ascl1) gene that moves away from the periphery when it needs to 

be activated in neural development [49], a transcription factor locus in T helper cells that 

needs to be repressed during stages of differentiation [50] and the cystic fibrosis 

transmembrane conductance regulator (CFTR) gene [51].  In all cases what proteins tether the 

locus to the NE and how these connections are broken remains unresolved.  

3.3. Directed localization of reporters to the NE in higher eukaryotes 

 It was expected that revisiting the artificial tethering of genes to the NE in 

mammalian cells would further elaborate on the mechanisms uncovered in yeast.  However, 

the mechanisms may be distinct as higher eukaryotes differ from yeast in having a dense and 

highly stable filamentous lamin polymer connected to the INM that could in theory amplify a 

silencing position effect due to steric constraints.  Indeed transgenes located near the nuclear 

periphery in mammalian cells have been shown to be less mobile than those residing in more 

internal positions [52], despite the fact that soluble molecules can travel quickly through such 

environments [53].  Furthermore, some of the chromatin is directly apposed to the lamina in 

both insect and mammalian cells [54,55] and associations are retained after extraction [56].  A 

role for specific lamins in tethering chromosome 18 to the periphery is supported by 

observations that the whole chromosome moves away from the periphery in lamin B1 

knockout cells with resultant gene derepression [57]. 
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To get further at the molecular mechanism behind NE silencing, three elegant studies 

this year in mammalian cells used different systems for inducible tethering of genes directly 

to the NE [58-60].  All three studies used cell lines in which bacterial lac operator (LacO) 

repeat sequences were inserted into the mammalian genome in a locus that was not typically 

close to the NE and these cells were then transfected with lac repressor (LacI) fused to a 

reporter alone or to a reporter and different NE proteins (Fig. 2A): lamin B1 [59] and the INM 

proteins emerin [60] and the lamina-associated polypeptide LAP2ß [58].  Two of the studies 

had a selectable marker inserted in the transgene array and both found that transcription of 

this reporter was reduced when the locus was at the periphery [58,60].  These systems 

allowed testing for the heritability of silencing as treatment of the cells with IPTG (isopropyl 

ß-D-1-thiogalactopyranoside) disrupts the LacO-LacI binding and releases the locus from the 

periphery.  The result of disrupting peripheral tethering was restoration of activity to the 

genes that had been silenced at the periphery in both studies [58,60].  One of the studies 

further found that many surrounding genes were repressed when the locus was at the 

periphery; however the pattern of gene regulation effected by the change in position was 

complex with some genes being downregulated and other genes unaffected [58].  If the 

environment of the periphery was generally repressive it could be due to a high concentration 

of general silencing factors or steric effects.  For the environment of the periphery to repress 

only certain genes argues that a group of transcriptional repressors that have restricted targets 

are concentrated in this environment.  The transcriptional repressors germ cell-less, Btf and 

Lmo7, each of which has target gene specificity, have been shown to bind variously to emerin 

and LAP2ß [12,61-63].  Moreover germ cell-less was further shown to mediate specific 

repression of E2F-regulated genes when LAP2ß was overexpressed [12,61].  Thus the use of 

emerin and LAP2ß to mediate tethering to the periphery may have artificially repressed 

certain genes through recruitment of these transcriptional repressors.  In one study the amino-

terminus of emerin was deleted to minimize this criticism [60]; however the deleted region 

only partly overlaps with the binding site on emerin for germ cell-less [61], so this was 

probably not sufficient.   
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Gene repression was not observed in the third study when the locus was at the 

periphery; however the reporter system was quite different.  In this case the reporter gene was 

under control of a strongly inducible promoter that could potentially overcome repressive 

effects of the periphery and a lamin B1-LacI fusion was used instead of the emerin and 

LAP2ß fusions that, as noted above, could recruit transcriptional repressors [59].  

Furthermore, the reporter gene contained MS2-binding sequences that allowed live 

visualization of its transcription with a fluorescent protein fusion to MS2 that bound to the 

mRNA [59].  Whether the locus was at the nuclear interior or the periphery the 

decondensation of the LacO spot and appearance of reporter-bound mRNA was the same, 

suggesting that gene repression did not occur.  Therefore, the question of whether/ how 

tethering a locus to the periphery directly results in its repression remains unresolved.   

3.4. Affinity tethering of chromatin to the NE 

In all three studies movement to the periphery was never observed during interphase, 

but required the cells to go through mitosis.  During NE reassembly at the end of mitosis 

many INM proteins bind early to mitotic chromosomes [64,65].  Thus in the relatively mobile 

mitotic phase the chromosomes/ LacO array must sample their environment for higher 

affinity binding sites (LacI-NE protein fusions).   

The use of higher affinity binding likely also functions to direct particular 

endogenous genes/ chromosomes to the periphery, but the proteins that tether them to the 

periphery have not been determined with the exception of Ku, Mlp/Tpr and SUN protein 

involvement in telomeric localization (shown in both yeast and mammalian cells) [34-

36,46,47] and lamin B1 in chromosome 18 localization in human cells [57].  It is possible that 

both general and specific interactions are involved for different types of chromatin and for 

individual genes.  Several nuclear envelope proteins interact with chromatin proteins in both 

yeast (see above) and mammalian cells (reviewed in [66]).  In mammalian cells lamins bind 

histones H2A/H2B [67] while the INM protein lamin B receptor (LBR) can bind histones 

H3/H4 [68].  LBR can also bind heterochromatin, directly binding heterochromatin protein 1 

(HP1) alpha and gamma [69] and preferentially binding histone H3 with the silent lysine 9 tri-
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methylation (H3K9Me3) mark (Fig. 1) [28,68].  A higher affinity of HP1 for INM proteins 

compared to partners in other nuclear locations has not been directly tested, but might be 

inferred from observations that microinjected HP1α accumulated at the periphery before 

eventually being distributed to other nuclear locations [70].  Barrier-to-autointegration factor 

(BAF), which binds several mammalian INM proteins [71,72], in turn binds to histone H3 

and linker histone H1 [73]; however, it does not appear to show any preference for 

association with modified histones such as H3K9Me3 [74].  Nonetheless BAF might be 

considered an epigenetic regulator because it can crosslink DNA/histones [75] (Fig. 1).  

The identification of specific histones as binding to lamins raises the question of 

whether other histone variants might have higher affinity for NE proteins.  In yeast INO1 and 

GAL1 genes were found to move to the periphery upon transcriptional inactivation.  

Concomitant with the relocalization was the replacement of histones with the histone variant 

H2A.Z, that is also found at promoters but has additionally been reported as a silencing factor 

[76].  This served as a mechanism for retaining memory of previous transcriptional activation 

as GAL1 at the periphery was activated faster than longer repressed GAL1 genes that were 

located in the interior of the nucleus.  The tethering of INO1 to the nuclear periphery required 

both H2A.Z [77] and the integral membrane protein Scs2p [78], suggesting that H2A.Z may 

have a higher affinity for Scs2p than other histones although this has not been tested.  In this 

light it is interesting that unique peptides for histone H2A.Y and H1.5 were identified in 

proteomic studies of the mammalian NE, suggesting that these might have higher affinity for 

the lamina than other histone subtypes though this also has yet to be directly tested [79]. 

 

4. Activation of Genes at the Nuclear Periphery 

 While most studies have focused on NE silencing, association with the nuclear 

periphery has also been associated with transcriptional activation.  As mentioned above 

(section 2) the amount of dense peripheral chromatin varies in different mammalian cell 

types.  Brain cells tend to have very little dense peripheral chromatin and the proteolipid 

protein (PLP) gene undergoes the transition from inactive to active while remaining at the 
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periphery during oligodendrocyte differentiation [80].  A similar effect was observed for the 

interferon-γ locus [50] and the breast cancer ERBB-2 and osteogenesis collagen type 1 alpha 

1 (COL1A1) loci are active when at the NE [81,82].   

The yeast NE can also activate genes.  Certain genes located proximal to NPCs are 

optimally activated at the periphery due to recruitment of transcription factors to these sites 

[83,84].  The ability of the NPC to both repress and activate genes may at least in part be due 

to interactions with insulator DNA sequences like the Drosophila gypsy sequences mentioned 

above (section 3.2).  As genes flanked by such sequences are protected from the effects of 

nearby silencing or activating marks on chromatin, this function has also been referred to as 

“boundary activity”.  Several NPC proteins were found to be able to function in insulator/ 

boundary activity using a very creative assay system [85].  In the boundary assay (Fig. 2B) a 

transgene was constructed in which two reporter genes were placed within a partially 

deprepressed mating type locus with DNA sequences flanking that interact specifically with 

the DNA binding domain of the Gal4p transcription factor.  Proteins were fused to the Gal4p 

DNA binding domain protein to screen for those that, when targeted to the specific flanking 

sequences, would be able to keep the reporter gene between them active when the second 

reporter was shut off due to propagation of silencing from the mating locus [85].  This screen 

identified the NPC-associated proteins Nup2p, Nup60p, Mlp1/2p and the Ran-GTP exchange 

factor Prp20p as being important for the formation of boundary activity in yeast [85,86].  

Prp20p binds chromatin and in particular the H2A.Z (also called Htz1p) variant of histone 

H2A that is loaded by the SWR-C chromatin-remodeling complex and reported to be often 

associated with silenced chromatin [76].  Mass spectrometric analysis of nucleosomes 

associated with Prp20p and H2A.Z showed hypoacetylation on histone H4 at K5 and K8 

considered to mark silent chromatin, but only moderately reduced acetylation (compared to 

total chromatin) at K12 and K16 that would be considered to mark active chromatin [87].  

This combination of opposing epigenetic marks is consistent with an intermediate “poised” 

state and thus with boundary activity.   
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Consistent with the yeast role of NPCs in recruiting transcription factors and 

boundary elements, genome-wide analysis of DNA that had been co-immunoprecipitated with 

NPC components in yeast indicated an overall enrichment in transcriptionally active genes 

[88].  This contrasts with the favoring of silent marks on certain specific mammalian NPC 

proteins such as Nup93 [27], suggesting a division of labor within the NPC between silencing 

and activating functions, though there might also be differences between organisms. 

 

5. De Novo Modification of Histones at the NE 

For the endogenous loci that have been shown to move between the periphery and 

interior of the nucleus, the chromatin modifications at the periphery differ from those in the 

interior.  The Mash1 locus involved in mammalian neurogenesis is located at the periphery in 

ES cells, replicates late and has some histone modifications characteristic of silenced 

chromatin and few active marks [49].  After Mash1 moves to the interior in neurally 

committed cells the timing of locus replication switches to early and histone modifications 

consistent with active chromatin predominate (Table 1; [49]).  However, as the movement in 

these systems is not subject to simple experimental regulation it is not possible to determine if 

the change in histone modifications is determined by the different environments or is a 

prerequisite for affinity-directed movement of the locus to the different environment. 

This distinction was clear in the LacO systems as locus movement was directed by a 

purely artificial affinity mechanism.  Differences in histone modifications were observed such 

that histone H4 acetylation was reduced when the locus was at the periphery [60].  Thus the 

more repressive environment at the periphery must contain enzymes that deacetylate histones.  

This was previously shown in the case of LAP2ß, where a 2-hyrid screen identified histone 

deacetylase 3 (HDAC3) as a binding partner [13].  HDAC3 mediates H4 deacetylation, and is 

linked to heterochromatic, transcriptionally inactive genomic regions. Thus recuitment of 

HDAC3 to the periphery by LAP2ß can silence genes that come into contact with the 

periphery [13].  Interestingly, treatment with HDAC3 inhibitors had little effect on NE-

directed gene repression in the LacO system that used LAP2ß to tether the locus to the 
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periphery [58], suggesting that steric constraints at the periphery or specific repressors play a 

greater role than recruitment to an environment rich with silencing histone deacetylases.  

NE proteins can directly modify histones for activation as well as repression.  One of 

the proteins identified in a proteomic analysis of mammalian NEs, NET43/ hALP, is a histone 

acetyltransferase [79].  NET43/ hALP localizes to mitotic chromosomes in mammalian cells 

by binding to the INM protein SUN1 [89].  Depletion of SUN1 results in delayed 

chromosome decondensation and a reduction in histone H2B and H4 acetylation and these 

functions are mediated by NET43/ hALP [89].  Interestingly NET43/ hALP appears to be 

upregulated during lymphocyte activation when the large amount of dense peripheral 

chromatin of resting lymphocytes becomes decondensed (N. Korfali, L. Florens, and E. 

Schirmer, unpublished observations).   

 

6. NE Diseases and Epigenetics 

Twelve different NE proteins have now been linked to human disease (Table 2) [90-

94].  Principle among them is lamin A, which with nearly 200 identified mutations has now 

been named the most mutated gene in the human genome.  Lamin diseases affect many 

different tissues and include muscular dystrophies [95-97], lipodystrophy [98-100], 

neuropathy [101,102], cardiomyopathy [103], dermopathy [104] and the aging disease 

progeria [105,106].  Several NETs and associated proteins also cause diseases or syndromes 

affecting muscle [107-110], bone [111,112], brain [113-117], skin [104] and immune cells 

[118].  Although each disease exhibits pathology preferentially in particular tissues, some 

patients have presented with overlapping pathologies.  Recent observations suggest that in 

some cases affected individuals may harbor mutations in multiple proteins.  For example one 

particularly debilitating case of Emery-Dreifuss muscular dystrophy is caused by mutations in 

both emerin and in desmin [119].  

The three currently favored and partially overlapping mechanisms proposed to 

explain NE disease pathologies are: 1) cell damage due to mechanical instability of the 

nucleus, 2) disruption of signaling cascades through the NE affecting cell cycle progression, 
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stem cell maintenance or differentiation, and 3) alteration of gene expression due to physical 

disruption of regulatory contacts at the NE.   

The hypothesis that NE diseases involve genome misregulation is supported by 

observations that 1) lamin A-binding transcriptional regulators do not bind lamin mutants that 

cause disease, 2) microarray data from normal and NE mutation cells indicates a pattern of 

misregulation of myoD and Rb pathways in NE-related muscular dystrophies [120,121], and 

3) cells from patients with NE diseases have abnormal distribution of dense peripheral 

chromatin.  The first two observations are likely due to specific interactions with 

transcriptional regulators, but the alterations in chromatin are likely due to epigenetic 

misregulation.  Specifically dense chromatin that is normally directly apposed to the NE 

redistributes away from the membrane in patients with lamin-related muscular dystrophy 

[122,123], progeria [124] and INM protein-related NE diseases such as emerin-linked 

muscular dystrophy [125-127].  Similar alterations in chromatin organization were observed 

in mouse lamin depletion models [128] and transgenic mice expressing lamin point mutants 

associated with cardiomyopathy [129].  Moreover, some differences in the overall positioning 

of chromosomes have also been observed in cells with specific lamin A mutations [92].   

Progeria is caused by a lamin mutation that results in accumulation of an early pre-

form with a farnesyl moiety [105,106].  Progeroid cells were analyzed for histone 

modifications associated with epigenetic regulation, finding that marks associated with 

silenced chromatin (histone H3 lysine 9 and lysine 27 methylation: H3K9Me3 and 

H3K27Me3) were reduced while a mark of active chromatin (histone H4 lysine 20 

methylation: H4K20Me) was increased [130].  Moreover, in a female patient silencing marks 

on the inactive X chromosome decreased and lost their tight association with the periphery by 

fluorescence microscopy.  A more striking effect was observed in immortalized tissue culture 

cells where H3K27Me3 strongly accumulated at the periphery with endogenous lamins, but 

dissipated in cells expressing a progeria mutation [130].  Moreover, an earlier pre-lamin A 

form lacking the farnesyl moiety accumulated HP1α in abundance over farnesylated pre-

lamin A [131].  These types of changes were recapitulated in normally aging cells [132].  
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Moreover some of these heterochromatin defects could be reversed by treatment of cells with 

farnesyltransferase inhibitors (i.e. that reduce accumulation of the farnesylated form of lamin 

A that occurs in progeria) [133].   

 A further novel layer of epigenetic regulation may derive from nuclear structural 

organization at the level of nuclear shape.  Nuclear lobulation is an aspect of neutrophil 

differentiation that increases the relative ratio of nuclear surface area to DNA [134].  This in 

theory would propagate silencing or activating effects from the NE over a much greater 

percentage of the genome.  The differentiation program of neutrophils focuses most heavily 

on genes regulated by C/EBP, PU.1 and at later stages retinoic acid receptor (RAR) 

transcription factors [135] and unfortunately these genes have not been specifically mapped to 

determine their relationship to the periphery.  Nonetheless, a recent study investigating global 

transcription in different blood cell lineages found that, though far fewer genes were 

expressed in neutrophils compared to progenitor cells, in both cases expression was 

concentrated in the nuclear interior [136].  Another particularly interesting observation is that 

terminally differentiated neutrophils withdraw completely from the cell cycle with complete 

silencing of E2F-mediated transcription [137].  In light of the repression of E2F-mediated 

transcription by overexpression of the INM protein LAP2ß via its recruitment of germ cell-

less to the periphery [12] the silencing during neutrophil differentiation could well be related 

to the increase in the NE surface area:DNA ratio.  Neutrophil lobulation is blocked in the 

Pelger-Huet anomaly disorder associated with mutations in the INM protein LBR [118].   

 

7. Summary 

Whether through lineage-heritable gene positioning, sequestration of transcription 

factors, or recruitment of transcriptional repressors and histone modifying enzymes, the NE 

contributes its own version of epigenetics to the fine-tuning of differentiation, stem cell 

maintenance and gene expression.  The complexity of interactions and mechanisms for 

silencing at the NE are likely to increase dramatically in the future as recent NE proteomic 

studies in both yeast and mammals have identified many novel uncharacterized proteins at the 
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NE [79,138-140] and overexpression of several of these novel INM proteins alters chromatin 

organization (N. Zuleger, P. Malik, L. Florens and E. Schirmer, unpublished observations).  

Moreover indications of tissue-specific differences in NE composition [141,142] argue for 

differences in NE epigenetics in different cell types.  It will be particularly interesting in the 

future to insert the LacO loci mentioned above into different cell types that have differences 

in the original distribution of peripheral heterochromatin to test how the pre-existing 

repressive environment of the periphery varies among different cell types. 

 A particularly intriguing observation in analyzing the NE proteome is that the unique 

INM proteins indicated to be the most abundant are almost without exception lacking in 

enzymatic functions, yet they seem to have an incredibly large number of binding partners 

[143].  Moreover these binding partners appear to literally coat the surface of the INM 

proteins in the cell [142].  Thus it is reasonable to assume that the effects of NE proteins in 

epigenetic regulation derive from a combination of their variable expression in different cell 

types and their ability to recruit specific chromatin modifying proteins to the NE.  The 

collosal scale of NPCs, with over 30 core proteins and many additional peripherally 

associated proteins forming >50 MDa complexes, could allow parts of the NPC to recruit 

factors that propagate silenced chromatin while others activate genes.  The finding moreover 

that some of these proteins have boundary/ insulator activity allows for active and repressed 

states to occur within a short stretch of chromatin and thus increases the complexity of active/ 

inactive genes in the proximity of the NPCs.  If NPCs have even a fraction of the tissue 

variation indicated at the NE, the range of possible combinations for varied regulation is 

enormous. 
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Legends to Figures and Tables 

 

Fig. 1.   

 

Schematic of nuclear envelope organization.  The nuclear envelope (NE) is a double 

membrane system continuous with the endoplasmic reticulum (ER).  In addition to sharing 

proteins with the proximal ER, the outer nuclear membrane (ONM) has a few characterized 

unique NE proteins.  The inner nuclear membrane (INM) contains many more unique integral 

proteins, which commonly are associated with the intermediate filament lamin polymer and 

chromatin.  The membrane is perforated by nuclear pore complexes (NPCs), large 

macromolecular assemblies upwards of 50 MDa that direct transport of large molecules in 

and out of the nucleus.  Differences in the interactions between INM proteins and their 
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chromatin and chromatin-modifying interaction partners could result in different types of 

chromatin accumulating at the periphery.  For example, lamins bind core histones 

(H2A:H2B:H3:H4), LBR binds to epigenetically marked histones and HP1, LAP2ß binds to 

the histone deacetylase HDAC3, and several INM proteins bind the BAF DNA crosslinker. 
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Fig. 2.   

 

Systems for assembling specific chromatin at the NE.  A.  In the lac operator system a gene 

locus is active when at the nuclear interior (left panel), but becomes repressed at the periphery 

(right panels).  Movement to the periphery requires going through mitosis and the locus can 

be released from the periphery with IPTG treatment.  Repression could occur through steric 

constraints (e.g. association with the lamin polymer) or by recruitment of transcriptional 

repressors (germ cell-less [gcl])/ histone modifying enzymes (HDAC3).  B.  Boundary 

activity at the NPCs yields characteristics of both silent and active chromatin.  The boundary 

assay (bottom) places the URA3 and ADE2 genes within a partially derepressed HML (mating 

type) locus with ADE2 flanked by Gal4p binding sequences (gal bs).  If a protein fused to the 

Gal4p DNA binding domain allows ADE2 expression while URA3 remains shut off, then it is 
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said to have boundary activity.  If the cells are grown in the absence of adenine they need 

expression of this ADE2 gene to survive, but in the presence of the drug 5-fluoroorotic acid 

(5-FOA) expression from the URA3 gene becomes toxic.  Thus the ability to grow in the 

combined absence of adenine and presence of 5-FOA when a particular NPC protein is fused 

to the Gal4p DNA binding domain indicates its role in boundary activity.  Results using this 

assay suggest that the Nup60p and Mlp1/2p proteins that have previously been shown to be 

important for telomere tethering to the periphery are also involved in boundary activity, but in 

association with Nup2p and the Ran-GTP exchange factor Prp20p.  Prp20p mediates the 

interaction with chromatin through binding “poised” histones with opposing epigenetic marks 

(e.g. acetylated [Ac] K12 and unmodified [Nm] K5) and the H2A.Z variant that is sometimes 

associated with silenced chromatin.   
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Table 1.  Changes in histone modifications between peripheral and central localization for the 

Mash1 gene. 

Gene Bias Mash1 

periphery 

Mash1 

interior 

Silent   

H3K9me3 +/- +/- 

H3K27me3 +++ + 

Active   

H3K9Ac + +++ 

H4Ac +/- ++ 

 [49] 

 

Table 2. Diseases caused by nuclear envelope protein mutations 

NE protein disease Primary tissue 
affects 

reference 

Lamins    
Lamin A Emery-Dreifuss 

muscular dystrophy 
(EDMD) type 2 (AD) 

muscle [95] 

 Emery-Dreifuss 
muscular dystrophy 
(EDMD) type 3 (AR) 

muscle [96] 

 Limb-girdle muscular 
dystrophy type 1B 
(LGMD-1B) 

muscle [97] 

 Charcot-Marie-Tooth 
disorder type 2B1 
(CMT-2B1) 

nerve [101] 

 Mandibuloacral 
dysplasia (MAD) type 
A/B 

multiple [144] 

 Autosomal dominant 
lipoatrophy with 
diabetes, hepatic 
steatosis, hypertrophic 
cardiomyopathy and 
leukomelanodermic 
papules 

multiple [145] 

 Dunnigan-type familial 
partial lipodystrophy 
(FPLD2) 

fat [98,100] 
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 Seip syndrome (BSCL2) fat [146] 
 Dilated cardiomyopathy 

with conduction defect 
(CMD1A) 

heart [103] 

 Restrictive dermopathy 
(RD) 

skin [104] 

 Hutchison-Gilford 
Progeria syndrome 
(HGPS) 

aging [105,106] 

 Atypical Werner 
Syndrome (AWS) 

aging [147] 

Lamin B1 Adult-onset autosomal 
dominant 
leukodystrophy 

nerve [102] 

Lamin B2 Barraquer-Simons 
syndrome 

fat [99] 

Transmembrane 
Proteins 

   

Emerin Emery-Dreifuss 
muscular dystrophy 
(EDMD) type 1 (X) 

muscle [107] 

Lamin B-receptor Pelger-Huet anomaly 
(PHA) 

neutrophils [118] 

 Greenburg/HEM 
skeletal dysplasia 
(GSD/HEM) 

bone [112] 

MAN1 Buschke-Ollendorff 
syndrome (BOS) 

bone [111] 

 Melorheostosis bone [111] 
Nesprin Emery-Dreifuss 

muscular dystrophy 
(EDMD)  

muscle [109] 

 Cerebellar ataxia (AR) nerve [113] 
NE-associated    
TorsinA Torsion dystonia 

(DYT1) 
nerve [115,116] 

FACE-1 Restrictive dermopathy 
(RD) 

skin [104] 

LAP2α cardiomyopathy heart [108] 
Aladin Triple A syndrome multiple [110] 
Nup60 Infantile bilateral striatal 

necrosis 
brain [114] 

(AD), autosomal dominant; (AR), autosomal recessive; (X), X-linked 
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