11 research outputs found

    Software-Managed Read and Write Wear-Leveling for Non-Volatile Main Memory

    Get PDF
    In-memory wear-leveling has become an important research field for emerging non-volatile main memories over the past years. Many approaches in the literature perform wear-leveling by making use of special hardware. Since most non-volatile memories only wear out from write accesses, the proposed approaches in the literature also usually try to spread write accesses widely over the entire memory space. Some non-volatile memories, however, also wear out from read accesses, because every read causes a consecutive write access. Software-based solutions only operate from the application or kernel level, where read and write accesses are realized with different instructions and semantics. Therefore different mechanisms are required to handle reads and writes on the software level. First, we design a method to approximate read and write accesses to the memory to allow aging aware coarse-grained wear-leveling in the absence of special hardware, providing the age information. Second, we provide specific solutions to resolve access hot-spots within the compiled program code (text segment) and on the application stack. In our evaluation, we estimate the cell age by counting the total amount of accesses per cell. The results show that employing all our methods improves the memory lifetime by up to a factor of 955×

    Starvation-induced regulation of carbohydrate transport at the blood-brain barrier is TGF-β-signaling dependent

    Full text link
    During hunger or malnutrition animals prioritize alimentation of the brain over other organs to ensure its function and thus their survival. This so-called brain sparing is described from Drosophila to humans. However, little is known about the molecular mechanisms adapting carbohydrate transport. Here, we used Drosophila genetics to unravel the mechanisms operating at the blood-brain barrier (BBB) under nutrient restriction. During starvation, expression of the carbohydrate transporter Tret1-1 is increased to provide more efficient carbohydrate uptake. Two mechanisms are responsible for this increase. Similarly to the regulation of mammalian GLUT4, Rab-dependent intracellular shuttling is needed for Tret1-1 integration into the plasma membrane, even though Tret1-1 regulation is independent of insulin signaling. In addition, starvation induces transcriptional upregulation that is controlled by TGF-β signaling. Considering TGF-β-dependent regulation of the glucose transporter GLUT1 in murine chondrocytes, our study reveals an evolutionarily conserved regulatory paradigm adapting the expression of sugar transporters at the BBB

    Fault attack vulnerability assessment of binary code

    No full text
    International audienceFault attacks are a major threat requiring to protect applications. We present a method and a set of metrics, implemented in a framework combining formal methods, dynamic and static analyses to evaluate the robustness of a binary code against fault attacks. The framework models the vulnerabilities detection as formal equivalence-checking problems that are solved by a SMT solver. It can support transient fault models targeting both data and code. Its application to programs hardened at source level shows its benefits for comparing different hardened versions, compilers and their optimizations, and for analyzing the sources of vulnerability
    corecore