60 research outputs found

    Role of P2 purinergic receptors in synaptic transmission under normoxic and ischaemic conditions in the CA1 region of rat hippocampal slices

    Get PDF
    The role of ATP and its stable analogue ATPγS [adenosine-5′-o-(3-thio)triphosphate] was studied in rat hippocampal neurotransmission under normoxic conditions and during oxygen and glucose deprivation (OGD). Field excitatory postsynaptic potentials (fEPSPs) from the dendritic layer or population spikes (PSs) from the soma were extracellularly recorded in the CA1 area of the rat hippocampus. Exogenous application of ATP or ATPγS reduced fEPSP and PS amplitudes. In both cases the inhibitory effect was blocked by the selective A1 adenosine receptor antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine) and was potentiated by different ecto-ATPase inhibitors: ARL 67156 (6-N,N-diethyl-D-β,γ-dibromomethylene), BGO 136 (1-hydroxynaphthalene-3,6-disulfonate) and PV4 [hexapotassium dihydrogen monotitanoundecatungstocobaltate(II) tridecahydrate, K6H2[TiW11CoO40]·13H2O]. ATPγS-mediated inhibition was reduced by the P2 antagonist suramin [8-(3-benzamido-4-methylbenzamido)naphthalene-1,3,5-trisulfonate] at the somatic level and by other P2 blockers, PPADS (pyridoxalphosphate-6-azophenyl-2′,4′-disulfonate) and MRS 2179 (2′-deoxy-N6-methyladenosine 3′,5′-bisphosphate), at the dendritic level. After removal of both P2 agonists, a persistent increase in evoked synaptic responses was recorded both at the dendritic and somatic levels. This effect was prevented in the presence of different P2 antagonists. A 7-min OGD induced tissue anoxic depolarization and was invariably followed by irreversible loss of fEPSP. PPADS, suramin, MRS2179 or BBG (brilliant blue G) significantly prevented the irreversible failure of neurotransmission induced by 7-min OGD. Furthermore, in the presence of these P2 antagonists, the development of anoxic depolarization was blocked or significantly delayed. Our results indicate that P2 receptors modulate CA1 synaptic transmission under normoxic conditions by eliciting both inhibitory and excitatory effects. In the same brain region, P2 receptor stimulation plays a deleterious role during a severe OGD insult

    Astrocyte networks and intercellular calcium propagation

    Get PDF
    International audienceAstrocytes organize in complex networks through connections by gap junction channels that are regulated by extra-and intracellular signals. Calcium signals generated in individual cells, can propagate across these networks in the form of intercellular calcium waves, mediated by diffusion of second messengers molecules such as inositol 1,4,5-trisphosphate. The mechanisms underpinning the large variety of spatiotemporal patterns of propagation of astrocytic calcium waves however remain a matter of investigation. In the last decade, awareness has grown on the morphological diversity of astrocytes as well as their connections in networks, which seem dependent on the brain area, developmental stage, and the ultra-structure of the associated neuropile. It is speculated that this diversity underpins an equal functional variety but the current experimental techniques are limited in supporting this hypothesis because they do not allow to resolve the exact connectivity of astrocyte networks in the brain. With this aim we present a general framework to model intercellular calcium wave propagation in astrocyte networks and use it to specifically investigate how different network topologies could influence shape, frequency and propagation of these waves

    A Neuron-Glial Perspective for Computational Neuroscience

    Get PDF
    International audienceThere is growing excitement around glial cells, as compelling evidence point to new, previously unimaginable roles for these cells in information processing of the brain, with the potential to affect behavior and higher cognitive functions. Among their many possible functions, glial cells could be involved in practically every aspect of the brain physiology in health and disease. As a result, many investigators in the field welcome the notion of a Neuron-Glial paradigm of brain function, as opposed to Ramon y Cayal's more classical neuronal doctrine which identifies neurons as the prominent, if not the only, cells capable of a signaling role in the brain. The demonstration of a brain-wide Neuron-Glial paradigm however remains elusive and so does the notion of what neuron-glial interactions could be functionally relevant for the brain computational tasks. In this perspective, we present a selection of arguments inspired by available experimental and modeling studies with the aim to provide a biophysical and conceptual platform to computational neuroscience no longer as a mere prerogative of neuronal signaling but rather as the outcome of a complex interaction between neurons and glial cells
    corecore