20 research outputs found

    High-resolution topochemical analysis and thermochemical simulations of oxides and nitrides at grain boundaries and within the grains of a low alloy Mn-Cr hot-rolled steel sheet

    Get PDF
    The selective oxidation underneath the scale layer of an industrially hot rolled Fe-1.8Mn-0.8Cr steel at temperatures between 600-700∘C has been investigated. The spatial distribution and composition of formed precipitates has been studied by high-resolution topochemical analysis via TEM-EELS and NanoSIMS and revealed heterogeneities in chemical composition, especially along grain boundaries. It could be shown that grain boundary oxides are predominantly composed of aluminium, chromium or silicon oxides/nitrides, surrounded by manganese-rich oxides. Experimental results of phase stability have been compared to numerical simulations, considering the distribution of more than 40 potentially stable oxide-, nitride- and carbide phases and differences are critically discussed

    Rapid Transfer of Plant Photosynthates to Soil Bacteria via Ectomycorrhizal Hyphae and Its Interaction With Nitrogen Availability

    Get PDF
    Plant roots release recent photosynthates into the rhizosphere, accelerating decomposition of organic matter by saprotrophic soil microbes (“rhizosphere priming effect”) which consequently increases nutrient availability for plants. However, about 90% of all higher plant species are mycorrhizal, transferring a significant fraction of their photosynthates directly to their fungal partners. Whether mycorrhizal fungi pass on plant-derived carbon (C) to bacteria in root-distant soil areas, i.e., incite a “hyphosphere priming effect,” is not known. Experimental evidence for C transfer from mycorrhizal hyphae to soil bacteria is limited, especially for ectomycorrhizal systems. As ectomycorrhizal fungi possess enzymatic capabilities to degrade organic matter themselves, it remains unclear whether they cooperate with soil bacteria by providing photosynthates, or compete for available nutrients. To investigate a possible C transfer from ectomycorrhizal hyphae to soil bacteria, and its response to changing nutrient availability, we planted young beech trees (Fagus sylvatica) into “split-root” boxes, dividing their root systems into two disconnected soil compartments. Each of these compartments was separated from a litter compartment by a mesh penetrable for fungal hyphae, but not for roots. Plants were exposed to a 13C-CO2-labeled atmosphere, while 15N-labeled ammonium and amino acids were added to one side of the split-root system. We found a rapid transfer of recent photosynthates via ectomycorrhizal hyphae to bacteria in root-distant soil areas. Fungal and bacterial phospholipid fatty acid (PLFA) biomarkers were significantly enriched in hyphae-exclusive compartments 24 h after 13C-CO2-labeling. Isotope imaging with nanometer-scale secondary ion mass spectrometry (NanoSIMS) allowed for the first time in situ visualization of plant-derived C and N taken up by an extraradical fungal hypha, and in microbial cells thriving on hyphal surfaces. When N was added to the litter compartments, bacterial biomass, and the amount of incorporated 13C strongly declined. Interestingly, this effect was also observed in adjacent soil compartments where added N was only available for bacteria through hyphal transport, indicating that ectomycorrhizal fungi were acting on soil bacteria. Together, our results demonstrate that (i) ectomycorrhizal hyphae rapidly transfer plant-derived C to bacterial communities in root-distant areas, and (ii) this transfer promptly responds to changing soil nutrient conditions

    Recently photoassimilated carbon and fungus-delivered nitrogen are spatially correlated in the ectomycorrhizal tissue of Fagus sylvatica

    Get PDF
    Ectomycorrhizal plants trade plant‐assimilated carbon for soil nutrients with their fungal partners. The underlying mechanisms, however, are not fully understood. Here we investigate the exchange of carbon for nitrogen in the ectomycorrhizal symbiosis of Fagus sylvatica across different spatial scales from the root system to the cellular level. We provided (15)N‐labelled nitrogen to mycorrhizal hyphae associated with one half of the root system of young beech trees, while exposing plants to a (13)CO(2) atmosphere. We analysed the short‐term distribution of (13)C and (15)N in the root system with isotope‐ratio mass spectrometry, and at the cellular scale within a mycorrhizal root tip with nanoscale secondary ion mass spectrometry (NanoSIMS). At the root system scale, plants did not allocate more (13)C to root parts that received more (15)N. Nanoscale secondary ion mass spectrometry imaging, however, revealed a highly heterogenous, and spatially significantly correlated distribution of (13)C and (15)N at the cellular scale. Our results indicate that, on a coarse scale, plants do not allocate a larger proportion of photoassimilated C to root parts associated with N‐delivering ectomycorrhizal fungi. Within the ectomycorrhizal tissue, however, recently plant‐assimilated C and fungus‐delivered N were spatially strongly coupled. Here, NanoSIMS visualisation provides an initial insight into the regulation of ectomycorrhizal C and N exchange at the microscale

    Anaerobic sulfur oxidation underlies adaptation of a chemosynthetic symbiont to oxic-anoxic interfaces

    Get PDF
    Chemosynthetic symbioses occur worldwide in marine habitats, but comprehensive physiological studies of chemoautotrophic bacteria thriving on animals are scarce. Stilbonematinae are coated by thiotrophic Gammaproteobacteria. As these nematodes migrate through the redox zone, their ectosymbionts experience varying oxygen concentrations. However, nothing is known about how these variations affect their physiology. Here, by applying omics, Raman microspectroscopy, and stable isotope labeling, we investigated the effect of oxygen on “Candidatus Thiosymbion oneisti.” Unexpectedly, sulfur oxidation genes were upregulated in anoxic relative to oxic conditions, but carbon fixation genes and incorporation of (13)C-labeled bicarbonate were not. Instead, several genes involved in carbon fixation were upregulated under oxic conditions, together with genes involved in organic carbon assimilation, polyhydroxyalkanoate (PHA) biosynthesis, nitrogen fixation, and urea utilization. Furthermore, in the presence of oxygen, stress-related genes were upregulated together with vitamin biosynthesis genes likely necessary to withstand oxidative stress, and the symbiont appeared to proliferate less. Based on its physiological response to oxygen, we propose that “Ca. T. oneisti” may exploit anaerobic sulfur oxidation coupled to denitrification to proliferate in anoxic sand. However, the ectosymbiont would still profit from the oxygen available in superficial sand, as the energy-efficient aerobic respiration would facilitate carbon and nitrogen assimilation. IMPORTANCE Chemoautotrophic endosymbionts are famous for exploiting sulfur oxidization to feed marine organisms with fixed carbon. However, the physiology of thiotrophic bacteria thriving on the surface of animals (ectosymbionts) is less understood. One longstanding hypothesis posits that attachment to animals that migrate between reduced and oxic environments would boost sulfur oxidation, as the ectosymbionts would alternatively access sulfide and oxygen, the most favorable electron acceptor. Here, we investigated the effect of oxygen on the physiology of “Candidatus Thiosymbion oneisti,” a gammaproteobacterium which lives attached to marine nematodes inhabiting shallow-water sand. Surprisingly, sulfur oxidation genes were upregulated under anoxic relative to oxic conditions. Furthermore, under anoxia, the ectosymbiont appeared to be less stressed and to proliferate more. We propose that animal-mediated access to oxygen, rather than enhancing sulfur oxidation, would facilitate assimilation of carbon and nitrogen by the ectosymbiont

    Microbial nitrogen limitation in the mammalian large intestine

    Get PDF
    Resource limitation is a fundamental factor governing the composition and function of ecological communities. However, the role of resource supply in structuring the intestinal microbiome has not been established and represents a challenge for mammals that rely on microbial symbionts for digestion: too little supply might starve the microbiome while too much might starve the host. We present evidence that microbiota occupy a habitat that is limited in total nitrogen supply within the large intestines of 30 mammal species. Lowering dietary protein levels in mice reduced their faecal concentrations of bacteria. A gradient of stoichiometry along the length of the gut was consistent with the hypothesis that intestinal nitrogen limitation results from host absorption of dietary nutrients. Nitrogen availability is also likely to be shaped by host-microbe interactions: levels of host-secreted nitrogen were altered in germ-free mice and when bacterial loads were reduced via experimental antibiotic treatment. Single-cell spectrometry revealed that members of the phylum Bacteroidetes consumed nitrogen in the large intestine more readily than other commensal taxa did. Our findings support a model where nitrogen limitation arises from preferential host use of dietary nutrients. We speculate that this resource limitation could enable hosts to regulate microbial communities in the large intestine. Commensal microbiota may have adapted to nitrogen-limited settings, suggesting one reason why excess dietary protein has been associated with degraded gut-microbial ecosystems

    Biology of a widespread uncultivated archaeon that contributes to carbon fixation in the subsurface

    Get PDF
    Subsurface microbial life contributes significantly to biogeochemical cycling, yet it remains largely uncharacterized, especially its archaeal members. This 'microbial dark matter' has been explored by recent studies that were, however, mostly based on DNA sequence information only. Here, we use diverse techniques including ultrastuctural analyses to link genomics to biology for the SM1 Euryarchaeon lineage, an uncultivated group of subsurface archaea. Phylogenomic analyses reveal this lineage to belong to a widespread group of archaea that we propose to classify as a new euryarchaeal order ('Candidatus Altiarchaeales'). The representative, double-membraned species 'Candidatus Altiarchaeum hamiconexum' has an autotrophic metabolism that uses a not-yet-reported Factor(420)-free reductive acetyl-CoA pathway, confirmed by stable carbon isotopic measurements of archaeal lipids. Our results indicate that this lineage has evolved specific metabolic and structural features like nano-grappling hooks empowering this widely distributed archaeon to predominate anaerobic groundwater, where it may represent an important carbon dioxide sink

    Sulfate is transported at significant rates through the symbiosome membrane and is crucial for nitrogenase biosynthesis

    No full text
    34 Pags.- 9 Figs. The definitive version is available at: https://onlinelibrary.wiley.com/journal/13653040Legume–rhizobia symbioses play a major role in food production for an ever growing human population. In this symbiosis, dinitrogen is reduced (“fixed”) to ammonia by the rhizobial nitrogenase enzyme complex and is secreted to the plant host cells, whereas dicarboxylic acids derived from photosynthetically produced sucrose are transported into the symbiosomes and serve as respiratory substrates for the bacteroids. The symbiosome membrane contains high levels of SST1 protein, a sulfate transporter. Sulfate is an essential nutrient for all living organisms, but its importance for symbiotic nitrogen fixation and nodule metabolism has long been underestimated. Using chemical imaging, we demonstrate that the bacteroids take up 20‐fold more sulfate than the nodule host cells. Furthermore, we show that nitrogenase biosynthesis relies on high levels of imported sulfate, making sulfur as essential as carbon for the regulation and functioning of symbiotic nitrogen fixation. Our findings thus establish the importance of sulfate and its active transport for the plant–microbe interaction that is most relevant for agriculture and soil fertility.This work was funded by the Austrian Science Fund (DK plus, W 1257‐820) and COST action FA1306 to S.W. and by grant AGL2017‐85775‐R from Ministerio de Economía y Competitividad‐Fondos Europeos de Desarrollo Regional (Spain) to M.B.Peer reviewe

    Unravelling necrotrophy by human gut microbes through powerful single cell labeling and detection methods

    No full text
    Microbial necrotrophy, the metabolization of necromass (dead microbial biomass) by living microbial cells, is understudied in the field of human gut microbiome research. Yet, necromass is abundantly available in the human gut. In a recent study, we observed high necromass loads (~60% of the fecal biomass consists of damaged/dead cells) in a cohort of 157 subjects. This dead biomass fraction does not directly contribute to the activity of the microbial community, but it could present an important overlooked nutrient source for the active microbial population. This hypothesis was explored in in vitro batch incubations, as well as, a more complex continuous in vitro gut simulator using various single-cell labelling and detection methods. In a first experiment, we demonstrated necrotrophic growth in in vitro batch incubations by means of Raman microspectroscopy. 100% 13C labeled necromass was supplied to a fresh fecal inoculum in the presence of deuterium (D2O) as a general activity marker, but in the absence of other nutrient sources. After 48 hours, we were able to identify double labeled (13C and D2O) necrotrophic cells, i.e. active cells that had taken up necromass. In a next stage, we used NanoSIMS, an extremely sensitive technique, to probe necrotrophy in the SHIME (Simulator of the Human Intestinal Microbial Ecosystem) in vitro model. 10% 13C and 15N labeled necromass was supplied to the SHIME in the presence of deuterium (D2O) as a general activity marker, in different nutrient conditions. We confirmed label transfer of 13C and 15N from necromass into living cells. Measurements of the 13C enrichment in the produced short chain fatty acid (SCFA) fermentation products through LC-IRMS, moreover, showed that the SCFA 13C over 12C ratio is proportional to the nutrient load. We furthermore, observed a higher 13C fraction in propionate and butyrate compared to acetate. This finding may indicate that necrotrophy is specific to a subset of gut microbes. The microbial community composition was followed up through quantitative microbiome profiling, combining Illumina 16S rRNA gene amplicon sequencing with flow cytometry, enabling the absolute quantification of gut microbial cells and the identification of their physiological state. This analysis confirmed that nutrient load affected the microbial community but this technique does not allow for the characterization of the necrotrophic population. We thereto established a high-throughput FACS-viability staining workflow that enables population level quantification and characterisation of the necrotrophic subpopulation after sorting. The method makes use of bio-orthogonal click chemistry to label proteins and sugars in necromass and study their transfer into living necrotropic cells. Proof of principle for protein transfer was obtained in a gut microbial community derived from one subject. In order to capture the inter-individual variability and diversity within the human gut microbiome, further research will be performed to identify the necrotrophic population from different fecal donors

    Taurine as a key intermediate for host-symbiont interaction in the tropical sponge Ianthella basta

    Get PDF
    Marine sponges are critical components of marine benthic fauna assemblages, where their filter-feeding and reef-building capabilities provide bentho-pelagic coupling and crucial habitat. As potentially the oldest representation of a metazoan-microbe symbiosis, they also harbor dense, diverse, and species-specific communities of microbes, which are increasingly recognized for their contributions to dissolved organic matter (DOM) processing. Recent omics-based studies of marine sponge microbiomes have proposed numerous pathways of dissolved metabolite exchange between the host and symbionts within the context of the surrounding environment, but few studies have sought to experimentally interrogate these pathways. By using a combination of metaproteogenomics and laboratory incubations coupled with isotope-based functional assays, we showed that the dominant gammaproteobacterial symbiont, ‘Candidatus Taurinisymbion ianthellae’, residing in the marine sponge, Ianthella basta, expresses a pathway for the import and dissimilation of taurine, a ubiquitously occurring sulfonate metabolite in marine sponges. ‘Candidatus Taurinisymbion ianthellae’ incorporates taurine-derived carbon and nitrogen while, at the same time, oxidizing the dissimilated sulfite into sulfate for export. Furthermore, we found that taurine-derived ammonia is exported by the symbiont for immediate oxidation by the dominant ammonia-oxidizing thaumarchaeal symbiont, ‘Candidatus Nitrosospongia ianthellae’. Metaproteogenomic analyses also suggest that ‘Candidatus Taurinisymbion ianthellae’ imports DMSP and possesses both pathways for DMSP demethylation and cleavage, enabling it to use this compound as a carbon and sulfur source for biomass, as well as for energy conservation. These results highlight the important role of biogenic sulfur compounds in the interplay between Ianthella basta and its microbial symbionts.</p
    corecore