181 research outputs found
Myogenic progenitors contribute to open but not closed fracture repair
<p>Abstract</p> <p>Background</p> <p>Bone repair is dependent on the presence of osteocompetent progenitors that are able to differentiate and generate new bone. Muscle is found in close association with orthopaedic injury, however its capacity to make a cellular contribution to bone repair remains ambiguous. We hypothesized that myogenic cells of the MyoD-lineage are able to contribute to bone repair.</p> <p>Methods</p> <p>We employed a <it>MyoD</it>-Cre<sup>+</sup>:Z/AP<sup>+ </sup>conditional reporter mouse in which all cells of the MyoD-lineage are permanently labeled with a <it>human alkaline phosphatase (hAP) </it>reporter. We tracked the contribution of MyoD-lineage cells in mouse models of tibial bone healing.</p> <p>Results</p> <p>In the absence of musculoskeletal trauma, MyoD-expressing cells are limited to skeletal muscle and the presence of reporter-positive cells in non-muscle tissues is negligible. In a closed tibial fracture model, there was no significant contribution of hAP<sup>+ </sup>cells to the healing callus. In contrast, open tibial fractures featuring periosteal stripping and muscle fenestration had up to 50% of hAP<sup>+ </sup>cells detected in the open fracture callus. At early stages of repair, many hAP<sup>+ </sup>cells exhibited a chondrocyte morphology, with lesser numbers of osteoblast-like hAP<sup>+ </sup>cells present at the later stages. Serial sections stained for hAP and type II and type I collagen showed that MyoD-lineage cells were surrounded by cartilaginous or bony matrix, suggestive of a functional role in the repair process. To exclude the prospect that osteoprogenitors spontaneously express MyoD during bone repair, we created a metaphyseal drill hole defect in the tibia. No hAP<sup>+ </sup>staining was observed in this model suggesting that the expression of MyoD is not a normal event for endogenous osteoprogenitors.</p> <p>Conclusions</p> <p>These data document for the first time that muscle cells can play a significant secondary role in bone repair and this knowledge may lead to important translational applications in orthopaedic surgery.</p> <p>Please see related article: <url>http://www.biomedcentral.com/1741-7015/9/136</url></p
Roles of brca2 (fancd1) in Oocyte Nuclear Architecture, Gametogenesis, Gonad Tumors, and Genome Stability in Zebrafish
Mild mutations in BRCA2 (FANCD1) cause Fanconi anemia (FA) when homozygous, while severe mutations cause common cancers including breast, ovarian, and prostate cancers when heterozygous. Here we report a zebrafish brca2 insertional mutant that shares phenotypes with human patients and identifies a novel brca2 function in oogenesis. Experiments showed that mutant embryos and mutant cells in culture experienced genome instability, as do cells in FA patients. In wild-type zebrafish, meiotic cells expressed brca2; and, unexpectedly, transcripts in oocytes localized asymmetrically to the animal pole. In juvenile brca2 mutants, oocytes failed to progress through meiosis, leading to female-to-male sex reversal. Adult mutants became sterile males due to the meiotic arrest of spermatocytes, which then died by apoptosis, followed by neoplastic proliferation of gonad somatic cells that was similar to neoplasia observed in ageing dead end (dnd)-knockdown males, which lack germ cells. The construction of animals doubly mutant for brca2 and the apoptotic gene tp53 (p53) rescued brca2-dependent sex reversal. Double mutants developed oocytes and became sterile females that produced only aberrant embryos and showed elevated risk for invasive ovarian tumors. Oocytes in double-mutant females showed normal localization of brca2 and pou5f1 transcripts to the animal pole and vasa transcripts to the vegetal pole, but had a polarized rather than symmetrical nucleus with the distribution of nucleoli and chromosomes to opposite nuclear poles; this result revealed a novel role for Brca2 in establishing or maintaining oocyte nuclear architecture. Mutating tp53 did not rescue the infertility phenotype in brca2 mutant males, suggesting that brca2 plays an essential role in zebrafish spermatogenesis. Overall, this work verified zebrafish as a model for the role of Brca2 in human disease and uncovered a novel function of Brca2 in vertebrate oocyte nuclear architecture
Interplay of Nkx3.2, Sox9 and Pax3 Regulates Chondrogenic Differentiation of Muscle Progenitor Cells
Muscle satellite cells make up a stem cell population that is capable of differentiating into myocytes and contributing to muscle regeneration upon injury. In this work we investigate the mechanism by which these muscle progenitor cells adopt an alternative cell fate, the cartilage fate. We show that chick muscle satellite cells that normally would undergo myogenesis can be converted to express cartilage matrix proteins in vitro when cultured in chondrogenic medium containing TGFß3 or BMP2. In the meantime, the myogenic program is repressed, suggesting that muscle satellite cells have undergone chondrogenic differentiation. Furthermore, ectopic expression of the myogenic factor Pax3 prevents chondrogenesis in these cells, while chondrogenic factors Nkx3.2 and Sox9 act downstream of TGFß or BMP2 to promote this cell fate transition. We found that Nkx3.2 and Sox9 repress the activity of the Pax3 promoter and that Nkx3.2 acts as a transcriptional repressor in this process. Importantly, a reverse function mutant of Nkx3.2 blocks the ability of Sox9 to both inhibit myogenesis and induce chondrogenesis, suggesting that Nkx3.2 is required for Sox9 to promote chondrogenic differentiation in satellite cells. Finally, we found that in an in vivo mouse model of fracture healing where muscle progenitor cells were lineage-traced, Nkx3.2 and Sox9 are significantly upregulated while Pax3 is significantly downregulated in the muscle progenitor cells that give rise to chondrocytes during fracture repair. Thus our in vitro and in vivo analyses suggest that the balance of Pax3, Nkx3.2 and Sox9 may act as a molecular switch during the chondrogenic differentiation of muscle progenitor cells, which may be important for fracture healing
A decade of data from a specialist statewide child and adolescent eating disorder service: does local service access correspond with the severity of medical and eating disorder symptoms at presentation?
Background - Eating disorders affect up to 3% of children and adolescents, with recovery often requiring specialist treatment. A substantial literature has accrued suggesting that lower access to health care services, experienced by rural populations, has a staggering effect on health-related morbidity and mortality. The aim of this study was to evaluate whether lower service access foreshadowed a more severe medical and symptom presentation among children and adolescents presenting to a specialist eating disorders program. Method - The data source was the Helping to Outline Paediatric Eating Disorders (HOPE) Project registry (N ~1000), a prospective ongoing registry study comprising consecutive paediatric tertiary eating disorder referrals. The sample consisted of 399 children and adolescents aged 8 to 16 years (M =14.49, 92% female) meeting criteria for a DSM-5 eating disorder. Results - Consistent with the hypotheses, lower service access was associated with a lower body mass index z-score and a higher likelihood of medical complications at intake assessment. Contrary to our hypothesis, eating pathology assessed at intake was associated with higher service access. No relationship was observed between service access and duration of illness or percentage of body weight lost. Conclusions - Lower service access is associated with more severe malnutrition and medical complications at referral to a specialist eating disorder program. These findings have implications for service planning and provision for rural communities to equalize health outcomes
Myoblast sensitivity and fibroblast insensitivity to osteogenic conversion by BMP-2 correlates with the expression of Bmpr-1a
<p>Abstract</p> <p>Background</p> <p>Osteoblasts are considered to primarily arise from osseous progenitors within the periosteum or bone marrow. We have speculated that cells from local soft tissues may also take on an osteogenic phenotype. Myoblasts are known to adopt a bone gene program upon treatment with the osteogenic bone morphogenetic proteins (BMP-2,-4,-6,-7,-9), but their osteogenic capacity relative to other progenitor types is unclear. We further hypothesized that the sensitivity of cells to BMP-2 would correlate with BMP receptor expression.</p> <p>Methods</p> <p>We directly compared the BMP-2 sensitivity of myoblastic murine cell lines and primary cells with osteoprogenitors from osseous tissues and fibroblasts. Fibroblasts forced to undergo myogenic conversion by transduction with a MyoD-expressing lentiviral vector (LV-MyoD) were also examined. Outcome measures included alkaline phosphatase expression, matrix mineralization, and expression of osteogenic genes <it>(alkaline phosphatase, osteocalcin </it>and <it>bone morphogenetic protein receptor-1A) </it>as measured by quantitative PCR.</p> <p>Results</p> <p>BMP-2 induced a rapid and robust osteogenic response in myoblasts and osteoprogenitors, but not in fibroblasts. Myoblasts and osteoprogenitors grown in osteogenic media rapidly upregulated <it>Bmpr-1a </it>expression. Chronic BMP-2 treatment resulted in peak <it>Bmpr-1a </it>expression at day 6 before declining, suggestive of a negative feedback mechanism. In contrast, fibroblasts expressed low levels of <it>Bmpr-1a </it>that was only weakly up-regulated by BMP-2 treatment. Bioinformatics analysis confirmed the presence of myogenic responsive elements in the proximal promoter region of human and murine <it>BMPR-1A/Bmpr-1a</it>. Forced myogenic gene expression in fibroblasts was associated with a significant increase in <it>Bmpr-1a </it>expression and a synergistic increase in the osteogenic response to BMP-2.</p> <p>Conclusion</p> <p>These data demonstrate the osteogenic sensitivity of muscle progenitors and provide a mechanistic insight into the variable response of different cell lineages to BMP-2.</p
Local treatment of cancellous bone grafts with BMP-7 and zoledronate increases both the bone formation rate and bone density: A bone chamber study in rats
Background and purpose The remodeling of morselized bone grafts in revision surgery can be enhanced by an anabolic substance such as a bone morphogenetic protein (BMP). On the other hand, BMPs boost catabolism and might cause a premature resorption, both of the graft and of the new-formed bone. Bisphosphonates inactivate osteoclasts and can be used to control the resorption. We studied a combination of both drugs as a local admix to a cancellous allograft. Methods Cancellous bone allografts were harvested and freeze-dried. Either saline, BMP-7, the bisphosphonate zoledronate, or a combination of BMP-7 and zoledronate were added in solution. The grafts were placed in bone conduction chambers and implanted in the proximal tibia of 34 rats. The grafts were harvested after 6 weeks and evaluated by histomorphometry. Results Bone volume/total volume (BV/TV) was 50% in the grafts treated with the combination of BMP-7 and zoledronate and 16% in the saline controls (p < 0.001). In the zoledronate group BV/TV was 56%, and in the BMP group it was 14%. The ingrowth distance of new bone into the graft was 3.5 mm for the combination of BMP-7 and zoledronate and 2.6 mm in the saline control (p = 0.002). The net amount of retained remodeled bone was more than 4 times higher when BMP-7 and zoledronate were combined than in the controls. Interpretation An anabolic drug like BMP-7 can be combined with an anti-catabolic bisphosphonate as local bone graft adjunct, and the combination increases the amount of remaining bone after remodeling is complete
Effects of air pollution on neonatal prematurity in guangzhou of china: a time-series study
<p>Abstract</p> <p>Background</p> <p>Over the last decade, a few studies have investigated the possible adverse effects of ambient air pollution on preterm birth. However, the correlation between them still remains unclear, due to insufficient evidences.</p> <p>Methods</p> <p>The correlation between air pollution and preterm birth in Guangzhou city was examined by using the Generalized Additive Model (GAM) extended Poisson regression model in which we controlled the confounding factors such as meteorological factors, time trends, weather and day of the week (DOW). We also adjusted the co linearity of air pollutants by using Principal Component Analysis. The meteorological data and air pollution data were obtained from the Meteorological Bureau and the Environmental Monitoring Centre, while the medical records of newborns were collected from the perinatal health database of all obstetric institutions in Guangzhou, China in 2007.</p> <p>Results</p> <p>In 2007, the average daily concentrations of NO<sub>2</sub>, PM<sub>10 </sub>and SO<sub>2 </sub>in Guangzhou, were 61.04, 82.51 and 51.67 μg/m<sup>3 </sup>respectively, where each day an average of 21.47 preterm babies were delivered. Pearson correlation analysis suggested a negative correlation between the concentrations of NO<sub>2</sub>, PM<sub>10</sub>, SO<sub>2, </sub>and temperature as well as relative humidity. As for the time-series GAM analysis, the results of single air pollutant model suggested that the cumulative effects of NO<sub>2</sub>, PM<sub>10 </sub>and SO<sub>2 </sub>reached its peak on day 3, day 4 and day 3 respectively. An increase of 100 μg/m<sup>3 </sup>of air pollutants corresponded to relative risks (RRs) of 1.0542 (95%CI: 1.0080 ~1.1003), 1.0688 (95%CI: 1.0074 ~1.1301) and 1.1298 (95%CI: 1.0480 ~1.2116) respectively. After adjusting co linearity by using the Principal Component Analysis, the GAM model of the three air pollutants suggested that an increase of 100 μg/m<sup>3 </sup>of air pollutants corresponded to RRs of 1.0185 (95%CI: 1.0056~1.0313), 1.0215 (95%CI: 1.0066 ~1.0365) and 1.0326 (95%CI: 1.0101 ~1.0552) on day 0; and RRs of the three air pollutants, at their strongest cumulative effects, were 1.0219 (95%CI: 1.0053~1.0386), 1.0274 (95%CI: 1.0066~1.0482) and 1.0388 (95%CI: 1.0096 ~1.0681) respectively.</p> <p>Conclusions</p> <p>This study indicates that the daily concentrations of air pollutants such as NO<sub>2</sub>, PM<sub>10 </sub>and SO<sub>2 </sub>have a positive correlation with the preterm births in Guangzhou, China.</p
Large neutral amino acids in the treatment of PKU: from theory to practice
Notwithstanding the success of the traditional dietary phenylalanine restriction treatment in phenylketonuria (PKU), the use of large neutral amino acid (LNAA) supplementation rather than phenylalanine restriction has been suggested. This treatment modality deserves attention as it might improve cognitive outcome and quality of life in patients with PKU. Following various theories about the pathogenesis of cognitive dysfunction in PKU, LNAA supplementation may have multiple treatment targets: a specific reduction in brain phenylalanine concentrations, a reduction in blood (and consequently brain) phenylalanine concentrations, an increase in brain neurotransmitter concentrations, and an increase in brain essential amino acid concentrations. These treatment targets imply different treatment regimes. This review summarizes the treatment targets and the treatment regimens of LNAA supplementation and discusses the differences in LNAA intake between the classical dietary phenylalanine-restricted diet and several LNAA treatment forms
- …