370 research outputs found

    STIMULATION OF IGG ANTIBODY RESPONSE IN VITRO BY T CELL-REPLACING FACTOR

    Get PDF
    A soluble factor (TRF) produced by mixtures of allogeneic mouse spleen, lymph node, and thymus cells functionally replaces T cells in a primary IgM antibody response to sheep blood cells in vitro. It is now shown that TRF can also reconstitute an IgG antibody response in T cell-deprived spleen cultures derived from preimmunized mice. The optimal time of addition and the amount of TRF required differ between primary and secondary in vitro systems

    Structural and functional insight into human O-GlcNAcase.

    Get PDF
    O-GlcNAc hydrolase (OGA) removes O-linked N-acetylglucosamine (O-GlcNAc) from a myriad of nucleocytoplasmic proteins. Through co-expression and assembly of OGA fragments, we determined the three-dimensional structure of human OGA, revealing an unusual helix-exchanged dimer that lays a structural foundation for an improved understanding of substrate recognition and regulation of OGA. Structures of OGA in complex with a series of inhibitors define a precise blueprint for the design of inhibitors that have clinical value

    GlcNAcstatin:a picomolar, selective O-GlcNAcase inhibitor that modulates intracellular O-glcNAcylation levels

    Get PDF
    Many phosphorylation signal transduction pathways in the eukaryotic cell are modulated by posttranslational modification of specific serines/threonines with N-acetylglucosamine (O-GlcNAc). Levels of O-GlcNAc on key proteins regulate biological processes as diverse as the cell cycle, insulin signaling, and protein degradation. The two enzymes involved in this dynamic and abundant modification are the O-GlcNAc transferase and O-GlcNAcase. Structural data have recently revealed that the O-GlcNAcase possesses an active site with significant structural similarity to that of the human lysosomal hexosaminidases HexA/HexB. PUGNAc, an O-GlcNAcase inhibitor widely used to raise levels of O-GlcNAc in human cell lines, also inhibits these hexosaminidases. Here, we have exploited recent structural information of an O-GlcNAcase-PUGNAc complex to design and synthesize a glucoimidazole-based inhibitor, GlcNAcstatin, which is a 5 pM competitive inhibitor of enzymes of the O-GlcNAcase family, shows 100000-fold selectivity over HexA/B, and binds to the O-GlcNAcase active site by mimicking the transition state as revealed by X-ray crystallography. This compound is able to raise O-GlcNAc levels in human HEK 293 and SH-SY5Y neuroblastoma cell lines and thus provides a novel, potent tool for the study of the role of O-GlcNAc in intracellular signal transduction pathways

    Motor Fatigue Measurement by Distance-Induced Slow Down of Walking Speed in Multiple Sclerosis

    Get PDF
    Background: Motor fatigue and ambulation impairment are prominent clinical features of people with multiple sclerosis (pMS). We hypothesized that a multimodal and comparative assessment of walking speed on short and long distance would allow a better delineation and quantification of gait fatigability in pMS. Objectives: To compare 4 walking paradigms: the timed 25-foot walk (T25FW), a corrected version of the T25FW with dynamic start (T25FW+), the timed 100-meter walk (T100MW) and the timed 500-meter walk (T500MW). Methods: Thirty controls and 81 pMS performed the 4 walking tests in a single study visit. Results: The 4 walking tests were performed with a slower WS in pMS compared to controls even in subgroups with minimal disability. The finishing speed of the last 100-meter of the T500MW was the slowest measurable WS whereas the T25FW+ provided the fastest measurable WS. The ratio between such slowest and fastest WS (Deceleration Index, DI) was significantly lower only in pMS with EDSS 4.0-6.0, a pyramidal or cerebellar functional system score reaching 3 or a maximum reported walking distance !4000m. Conclusion: The motor fatigue which triggers gait deceleration over a sustained effort in pMS can be measured by the WS ratio between performances on a very short distance and the finishing pace on a longer more demanding task. The absolute walking speed is abnormal early in MS whatever the distance of effort when patients are unaware of ambulation impairment. In contrast, the DI-measured ambulation fatigability appears to take place later in the disease course

    Methylxanthins and tannins content in young leaves of guaranaze cultivars under different production systems.

    Get PDF
    This work was developed with the general objective of evaluating the potential of using young guarana leaves as raw material for the food, cosmetics and pharmaceutical industries, and with specific objectives of assessing the possible existence of differential responses of cultivars and production systems, to the variable methylxanthines (caffeine and theobromine) and condensed tannins (epicatechin and catechin) from new, recently sprouted guarana leaves

    Seleção simultânea para adaptabilidade, estabilidade e produtividade de caracteres agroindustriais de guaraná.

    Get PDF
    O pó de sementes guaraná da Amazônia é um produto com efeitos terapêuticos, energéticos e antioxidantes atribuídos às metilxantinas e catequinas. O comportamento dos genótipos de guaraná em diferentes ambientes visa apoiar o programa de melhoramento genético. O objetivo deste estudo é selecionar genótipos de guaraná por seleção simultânea, com ampla adaptabilidade, estabilidade e produtividade para caracteres agroindustriais, para o estado do Amazonas, Brasil.Título em Inglês: Simultaneous selection for adaptability, stability and yield of agroindustrial character of guarana

    Development and Validation of a New Method to Measure Walking Speed in Free-Living Environments Using the Actibelt® Platform

    Get PDF
    Walking speed is a fundamental indicator for human well-being. In a clinical setting, walking speed is typically measured by means of walking tests using different protocols. However, walking speed obtained in this way is unlikely to be representative of the conditions in a free-living environment. Recently, mobile accelerometry has opened up the possibility to extract walking speed from long-time observations in free-living individuals, but the validity of these measurements needs to be determined. In this investigation, we have developed algorithms for walking speed prediction based on 3D accelerometry data (actibelt®) and created a framework using a standardized data set with gold standard annotations to facilitate the validation and comparison of these algorithms. For this purpose 17 healthy subjects operated a newly developed mobile gold standard while walking/running on an indoor track. Subsequently, the validity of 12 candidate algorithms for walking speed prediction ranging from well-known simple approaches like combining step length with frequency to more sophisticated algorithms such as linear and non-linear models was assessed using statistical measures. As a result, a novel algorithm employing support vector regression was found to perform best with a concordance correlation coefficient of 0.93 (95%CI 0.92–0.94) and a coverage probability CP1 of 0.46 (95%CI 0.12–0.70) for a deviation of 0.1 m/s (CP2 0.78, CP3 0.94) when compared to the mobile gold standard while walking indoors. A smaller outdoor experiment confirmed those results with even better coverage probability. We conclude that walking speed thus obtained has the potential to help establish walking speed in free-living environments as a patient-oriented outcome measure
    corecore