6,300 research outputs found

    Linear-in-frequency optical conductivity in GdPtBi due to transitions near the triple points

    Full text link
    The complex optical conductivity of the half-Heusler compound GdPtBi is measured in a frequency range from 20 to 22 000 cm−1^{-1} (2.5 meV - 2.73 eV) at temperatures down to 10 K in zero magnetic field. We find the real part of the conductivity, σ1(ω)\sigma_{1}(\omega), to be almost perfectly linear in frequency over a broad range from 50 to 800 cm−1^{-1} (∼\sim 6 - 100 meV) for T≤50T \leq 50 K. This linearity strongly suggests the presence of three-dimensional linear electronic bands with band crossings (nodes) near the chemical potential. Band-structure calculations show the presence of triple points, where one doubly degenerate and one nondegenerate band cross each other in close vicinity of the chemical potential. From a comparison of our data with the optical conductivity computed from the band structure, we conclude that the observed nearly linear σ1(ω)\sigma_{1}(\omega) originates as a cumulative effect from all the transitions near the triple points.Comment: 5+ pages, 5 figures, band-structure and optical-conductivity calculations adde

    Microscopic theory of glassy dynamics and glass transition for molecular crystals

    Full text link
    We derive a microscopic equation of motion for the dynamical orientational correlators of molecular crystals. Our approach is based upon mode coupling theory. Compared to liquids we find four main differences: (i) the memory kernel contains Umklapp processes, (ii) besides the static two-molecule orientational correlators one also needs the static one-molecule orientational density as an input, where the latter is nontrivial, (iii) the static orientational current density correlator does contribute an anisotropic, inertia-independent part to the memory kernel, (iv) if the molecules are assumed to be fixed on a rigid lattice, the tensorial orientational correlators and the memory kernel have vanishing l,l'=0 components. The resulting mode coupling equations are solved for hard ellipsoids of revolution on a rigid sc-lattice. Using the static orientational correlators from Percus-Yevick theory we find an ideal glass transition generated due to precursors of orientational order which depend on X and p, the aspect ratio and packing fraction of the ellipsoids. The glass formation of oblate ellipsoids is enhanced compared to that for prolate ones. For oblate ellipsoids with X <~ 0.7 and prolate ellipsoids with X >~ 4, the critical diagonal nonergodicity parameters in reciprocal space exhibit more or less sharp maxima at the zone center with very small values elsewhere, while for prolate ellipsoids with 2 <~ X <~ 2.5 we have maxima at the zone edge. The off-diagonal nonergodicity parameters are not restricted to positive values and show similar behavior. For 0.7 <~ X <~ 2, no glass transition is found. In the glass phase, the nonergodicity parameters show a pronounced q-dependence.Comment: 17 pages, 12 figures, accepted at Phys. Rev. E. v4 is almost identical to the final paper version. It includes, compared to former versions v2/v3, no new physical content, but only some corrected formulas in the appendices and corrected typos in text. In comparison to version v1, in v2-v4 some new results have been included and text has been change

    ECU-oriented models for NOx prediction. Part 2: adaptive estimation by using an NOx sensor

    Full text link
    The implantation of nitrogen oxide sensors in diesel engines is necessary in order to track emissions at the engine exhaust line for diagnosis and control of the after-treatment devices. However, the use of models is still necessary since the sensor outputs are delayed and filtered. The present paper deals with the problem of the nitrogen oxide estimation in two parts; Part 1 deals with a control-oriented model for the nitrogen oxide estimation, while Part 2 presents data fusion of the model and the sensor to improve the estimation, which is presented in the following. The use of models for the nitrogen oxide estimation is an alternative but the drift and the ageing are still issues. In order to overcome this problem, the fusion of different signals can be carried out in a smart way by means of a Kalman filter. There exist different ways of presenting this fusion, from directly tracking the bias to updating the model parameters. For this, different algorithms are proposed in this paper with the aim of correcting the model output. Furthermore, the estimation of the actual nitrogen oxide concentration, by preventing sensor delay and filtering, is also integrated in the algorithm, which is a suitable strategy for combining nitrogen oxide sensors and models on an onboard basis.Guardiola, C.; Climent, H.; Pla Moreno, B.; Blanco-Rodriguez, D. (2015). ECU-oriented models for NOx prediction. Part 2: adaptive estimation by using an NOx sensor. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 229(10):1345-1360. doi:10.1177/0954407014561278S134513602291

    Beautiful Baryons from Lattice QCD

    Full text link
    We perform a lattice study of heavy baryons, containing one (Λb\Lambda_b) or two bb-quarks (Ξb\Xi_b). Using the quenched approximation we obtain for the mass of Λb\Lambda_b MΛb=5.728±0.144±0.018GeV. M_{\Lambda_b}= 5.728 \pm 0.144 \pm 0.018 {\rm GeV}. The mass splitting between the Λb\Lambda_b and the B-meson is found to increase by about 20\% if the light quark mass is varied from the chiral limit to the strange quark mass.Comment: 11 pages, Figures obtained upon request from [email protected]

    Molecular mode-coupling theory for supercooled liquids: Application to water

    Full text link
    We present mode-coupling equations for the description of the slow dynamics observed in supercooled molecular liquids close to the glass transition. The mode-coupling theory (MCT) originally formulated to study the slow relaxation in simple atomic liquids, and then extended to the analysis of liquids composed by linear molecules, is here generalized to systems of arbitrarily shaped, rigid molecules. We compare the predictions of the theory for the qq-vector dependence of the molecular nonergodicity parameters, calculated by solving numerically the molecular MCT equations in two different approximation schemes, with ``exact'' results calculated from a molecular dynamics simulation of supercooled water. The agreement between theory and simulation data supports the view that MCT succeeds in describing the dynamics of supercooled molecular liquids, even for network forming ones.Comment: 22 pages 4 figures Late
    • …
    corecore