We present mode-coupling equations for the description of the slow dynamics
observed in supercooled molecular liquids close to the glass transition. The
mode-coupling theory (MCT) originally formulated to study the slow relaxation
in simple atomic liquids, and then extended to the analysis of liquids composed
by linear molecules, is here generalized to systems of arbitrarily shaped,
rigid molecules. We compare the predictions of the theory for the q-vector
dependence of the molecular nonergodicity parameters, calculated by solving
numerically the molecular MCT equations in two different approximation schemes,
with ``exact'' results calculated from a molecular dynamics simulation of
supercooled water. The agreement between theory and simulation data supports
the view that MCT succeeds in describing the dynamics of supercooled molecular
liquids, even for network forming ones.Comment: 22 pages 4 figures Late