4,775 research outputs found

    Status and Commissioning of the CMS Experiment

    Get PDF
    After a brief overview of the Compact Muon Solenoid (CMS) experiment, the status of construction and installation is described in the first part of the note. The second part of the document is devoted to a discussion of the general commissioning strategy of the CMS experiment, with a particular emphasis on trigger, calibration and alignment. Aspects of b-physics, as well as examples for early physics with CMS are also presented. CMS will be ready for data taking in time for the first collisions in the Large Hadron Collider (LHC) at CERN in late 2007.Comment: Talks given at the 11th Intl. Conference on B-Physics at Hadron Machines BEAUTY 2006, Oxford (UK), September 200

    Summary of Current LLNL Projects with the Russian Federation

    Get PDF
    Developing a sophisticated theory to understand the electronic structure of 5f-metals is a great challenge to solid state physics. Complicated electronic structures of 5f-metals make their properties strongly sensitive to small energy changes produced by the addition of a small amount of alloy, impurities, or crystal structure defects caused by irradiation. A theoretical material science technique applicable to investigate these effects is atomistic simulation using Classical Molecular Dynamics (CMD). In contrast to ab initio techniques, CMD may include several million particles, so that there is a possibility of direct simulation of very low concentration impurities and defects (as well as phenomena such as plasticity and polymorphous transitions) under given conditions. The goal is to develop theoretical models to understand and predict changes in materials properties of actinides caused by self-irradiation

    Bailey flows and Bose-Fermi identities for the conformal coset models (A1(1))N×(A1(1))N/(A1(1))N+N(A^{(1)}_1)_N\times (A^{(1)}_1)_{N'}/(A^{(1)}_1)_{N+N'}

    Full text link
    We use the recently established higher-level Bailey lemma and Bose-Fermi polynomial identities for the minimal models M(p,p)M(p,p') to demonstrate the existence of a Bailey flow from M(p,p)M(p,p') to the coset models (A1(1))N×(A1(1))N/(A1(1))N+N(A^{(1)}_1)_N\times (A^{(1)}_1)_{N'}/(A^{(1)}_1)_{N+N'} where NN is a positive integer and NN' is fractional, and to obtain Bose-Fermi identities for these models. The fermionic side of these identities is expressed in terms of the fractional-level Cartan matrix introduced in the study of M(p,p)M(p,p'). Relations between Bailey and renormalization group flow are discussed.Comment: 28 pages, AMS-Latex, two references adde

    Superconducting pipes and levitating magnets

    Get PDF
    Motivated by a beautiful demonstration of the Faraday's and Lenz's law in which a small neodymium magnet falls slowly through a conducting non-ferromagnetic tube, we consider the dynamics of a magnet falling through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong magnets, the barrier is so large that the magnet will not be able to penetrate it and will be suspended over the front edge. We calculate the work that must done to force the magnet to enter a superconducting tube. The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example, the magnetic field of a dipole at the center of a short pipe of radius aa and length LaL \approx a decays, in the axial direction, with a characteristic length ξ0.26a\xi \approx 0.26 a. The efficient screening of the magnetic field might be useful for shielding highly sensitive superconducting quantum interference devices, SQUIDs. Finally, the motion of the magnet through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane channel

    CONSUMER KNOWLEDGE OF FOOD BIOTECHNOLOGY: A DESCRIPTIVE STUDY OF U.S. RESIDENTS

    Get PDF
    A national survey conducted by the Food Policy Institute demonstrates the lack of knowledge and awareness most Americans have of genetically modified foods. The paper provides insight into public perceptions of food biotechnology's risks and benefits and a preliminary examination of consumers' stated preferences for genetically modified functional foods.Research and Development/Tech Change/Emerging Technologies,

    PUBLIC PERCEPTIONS OF GENETICALLY MODIFIED FOODS: AMERICANS KNOW NOT WHAT THEY EAT

    Get PDF
    Biotechnology stands to be a defining technology in the future of food and agriculture. Proponents argue that science and industry are poised to bring consumers a wide variety of products that have potential for meeting basic food needs, as well as delivering a wide-range of health, environmental and economic benefits. Opponents counter that the potential exists for unintended consequences, ranging from ecological disruption to adverse human health implications, and that these risks are not fully understood. Fundamental questions exist, however, regarding the general public's position on food products derived with the use of biotechnology. To address these questions, the Food Policy Institute addressed consumers using computer-assisted telephone interviews (CATI) system, a public phone survey of a sample selection of 1203 U.S. residents was administered between March and April 2001. The questionnaire was developed to address perceived gaps in the current literature on American consumer awareness, acceptance, and perceptions of food biotechnology and to serve as the basis for a set of longitudinal studies that will be able to track public opinion over time.Consumer/Household Economics,

    LC-Circuit Calorimetry

    Full text link
    We present a new type of calorimeter in which we couple an unknown heat capacity with the aid of Peltier elements to an electrical circuit. The use of an electrical inductance and an amplifier in the circuit allows us to achieve autonomous oscillations, and the measurement of the corresponding resonance frequency makes it possible to accurately measure the heat capacity with an intrinsic statistical error that decreases as ~t^{-3/2} with measuring time t, as opposed to a corresponding error ~t^{-1/2} in the conventional alternating current (a.c.) method to measure heat capacities. We have built a demonstration experiment to show the feasibility of the new technique, and we have tested it on a gadolinium sample at its transition to the ferromagnetic state.Comment: 6 pages, 5 figure
    corecore