98 research outputs found

    Greening US legacy cities: urban agriculture as a strategy for reclaiming vacant land

    Get PDF
    Repurposing vacant land for food production is expanding as a response to urban blight, food insecurity and food deserts. As municipalities integrate urban agriculture in their sustainability plans and zoning regulations, scholars are beginning to take a broader look at the benefits from this and other types of greening strategies. This article investigates current state of research and practice of urban agriculture as an emerging strategy for regenerating shrinking cities. It highlights key findings while offering observations on how public officials and practitioners can leverage this research to enhance urban agriculture as a treatment for vacant land

    High-throughput sequencing of 16S rRNA Gene Reveals Substantial Bacterial Diversity on the Municipal Dumpsite

    Get PDF
    Background Multiple types of solid waste in developing countries is disposed of together in dumpsites where there is interaction between humans, animals and the bacteria in the waste. To study the bacteria at the dumpsite and the associated risks, previous studies have focused on culturable, leaving behind a great number of unculturable bacteria. This study focuses on a more comprehensive approach to study bacteria at the dumpsite. Since the site comprised of unsorted wastes, a qualitative survey was first performed to identify the variety of solid waste as this has influence on the microbial composition. Thus, domestic (Dom), biomedical (Biom), river sludge (Riv), and fecal material of pigs scavenging on the dumpsite (FecD) were sampled. Total DNA was extracted from 78 samples and the v4-16S rRNA amplicons was characterized using an Illumina MiSeq platform. Results A total of 8,469,294 sequences passed quality control. Catchall analysis predicted a mean of 8243 species per sample. Diversity was high with an average InvSimpson index of 44.21 ± 1.44. A total of 35 phyla were detected and the predominant were Firmicutes (38 %), Proteobacteria (35 %), Bacteroidetes (13 %) and Actinobacteria (3 %). Overall 76,862 OTUs were detected, however, only 20 % were found more than 10 times. The predominant OTUs were Acinetobacter (12.1 %), Clostridium sensu stricto (4.8 %), Proteinclasticum and Lactobacillus both at (3.4 %), Enterococcus (2.9 %) and Escherichia/Shigella (1.7 %). Indicator analysis (P ≤ 0.05, indicator value ≥ 70) shows that Halomonas, Idiomarina, Tisierella and Proteiniclasticum were associated with Biom; Enterococcus, Bifidobacteria, and Clostridium sensu stricto with FecD and Flavobacteria, Lysobacterand Commamonas to Riv. Acinetobacter and Clostridium sensu stricto were found in 62 % and 49 % of all samples, respectively, at the relative abundance of 1 %. None of OTUs was found across all samples. Conclusions This study provides a comprehensive report on the abundance and diversity bacteria in municipal dumpsite. The species richness reported here shows the complexity of this man-made ecosystem and calls for further research to assess for a link between human diseases and the dumpsite. This would provide insight into proper disposal of the waste, as well as, limit the risks to human health associated with the dumpsite

    High abundance of a single taxon (amphipods) predicts aquatic macrophyte biodiversity in prairie wetlands

    Get PDF
    Conservation programs often aim to protect the abundance of individual species and biodiversity simultaneously. We quantified relations between amphipod densities and aquatic macrophyte (large plants and algae) diversity to test a hypothesis that biodiversity can support high abundance of a single taxonomic group. Amphipods (Gammarus lacustris and Hyalella azteca) are key forage for waterfowl and are declining in the Prairie Pothole Region of North America. We sampled a large gradient of amphipod densities (0–7050 amphipods/m3) in 49 semi-permanent wetlands, and 50% of the study wetlands had high amphipod densities (\u3e 500 amphipods/m3). Generalized linear models revealed G. lacustris and H. azteca densities increased exponentially with macrophyte diversity indices. Further, H. azteca densities were greatest at moderate levels of submersed vegetation biomass. Community analyses showed both amphipod species were positively associated with diverse macrophyte assemblages and negatively associated with high coverage of cattails (Typha spp.), a taxon that creates monotypic stands, as well as bladderwort (Utricularia spp.), a carnivorous plant. Our results indicate that amphipods could be used as an umbrella species for protecting diverse macrophyte communities in semi-permanent and permanent wetlands of North America’s Prairie Pothole Region

    Effect of the dietary supplement Meltdown on catecholamine secretion, markers of lipolysis, and metabolic rate in men and women: a randomized, placebo controlled, cross-over study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have recently reported that the dietary supplement Meltdown<sup>® </sup>increases plasma norepinephrine (NE), epinephrine (EPI), glycerol, free fatty acids (FFA), and metabolic rate in men. However, in that investigation measurements ceased at 90 minutes post ingestion, with values for blood borne variables peaking at this time. It was the purpose of the present investigation to extend the time course of measurement to 6 hours, and to include women within the design to determine if sex differences to treatment exist.</p> <p>Methods</p> <p>Ten men (24 ± 4 yrs) and 10 women (22 ± 2 yrs) ingested Meltdown<sup>® </sup>or a placebo, using a randomized, cross-over design with one week separating conditions. Blood samples were collected immediately before supplementation and at one hour intervals through 6 hours post ingestion. A standard meal was provided after the hour 3 collection. Samples were assayed for EPI, NE, glycerol, and FFA. Five minute breath samples were collected at each time for measurement of metabolic rate and substrate utilization. Area under the curve (AUC) was calculated. Heart rate and blood pressure were recorded at all times. Data were also analyzed using a 2 (sex) × 2 (condition) × 7 (time) repeated measures analysis of variance, with Tukey <it>post hoc </it>testing.</p> <p>Results</p> <p>No sex × condition interactions were noted for AUC for any variable (p > 0.05). Hence, AUC data are collapsed across men and women. AUC was greater for Meltdown<sup>® </sup>compared to placebo for EPI (367 ± 58 pg·mL<sup>-1</sup>·6 hr<sup>-1 </sup>vs. 183 ± 27 pg·mL<sup>-1</sup>·6 hr<sup>-1</sup>; p = 0.01), NE (2345 ± 205 pg·mL<sup>-1</sup>·6 hr<sup>-1 </sup>vs. 1659 ± 184 pg·mL<sup>-1</sup>·6 hr<sup>-1</sup>; p = 0.02), glycerol (79 ± 8 μg·mL<sup>-1</sup>·6 hr<sup>-1 </sup>vs. 59 ± 6 μg·mL<sup>-1</sup>·6 hr<sup>-1</sup>; p = 0.03), FFA (2.46 ± 0.64 mmol·L<sup>-1</sup>·6 hr<sup>-1 </sup>vs. 1.57 ± 0.42 mmol·L<sup>-1</sup>·6 hr<sup>-1</sup>; p = 0.05), and kilocalorie expenditure (439 ± 26 kcal·6 hrs<sup>-1 </sup>vs. 380 ± 14 kcal·6 hrs<sup>-1</sup>; p = 0.02). No effect was noted for substrate utilization (p = 0.39). Both systolic and diastolic blood pressure (p < 0.0001; 1–16 mmHg), as well as heart rate (p = 0.01; 1–9 bpm) were higher for Meltdown<sup>®</sup>. No sex × condition × time interactions were noted for any variable (p > 0.05).</p> <p>Conclusion</p> <p>Ingestion of Meltdown<sup>® </sup>results in an increase in catecholamine secretion, lipolysis, and metabolic rate in young men and women, with a similar response for both sexes. Meltdown<sup>® </sup>may prove to be an effective intervention strategy for fat loss, assuming individuals are normotensive and their treatment is monitored by a qualified health care professional.</p

    Early detection of Mycobacterium avium subsp. paratuberculosis infection in cattle with multiplex-bead based immunoassays

    Get PDF
    Johne’s Disease (JD), caused by Mycobacterium avium subspecies paratuberculosis (MAP), results in significant economic loss to livestock production. The early detection of MAP infection in animals with extant serological assays has remained challenging due to the low sensitivity of commercially available ELISA tests, a fact that has hampered the development of effective JD control programs. Our recent protein microarray-based studies identified several promising candidate antigens that are immunogenic during different stages of MAP infection. To evaluate these antigens for use in diagnostic assays and reliably identify animals with MAP infection, a multiplex (Luminex®) assay was developed using color-coded flourescent beads coupled to 6 MAP recombinant proteins and applied to screen 180 serum and 90 milk samples from cows at different stages of MAP infection including negative (NL), fecal test positive/ELISA negative (F+E-), and fecal positive/ELISA positive (F+E+). The results show that while serum antibody reactivities to each of the 6 anti-gens were highest in F+E+ group, antibody reactivity to three of the six antigens were identified in the F+E- group, suggesting that these three antigens are expressed and provoke antibody responses during the early infection stages with MAP. Further, antibodies against all six antigens were elevated in milk samples from both the F+E- and F+E+ groups in comparison to the NL group (

    Identification of Sero-Diagnostic Antigens for the Early Diagnosis of Johne’s Disease using MAP Protein Microarrays

    Get PDF
    Considerable effort has been directed toward controlling Johne’s disease (JD), a chronic granulomatous intestinal inflammatory disease caused by Mycobacterium avium subsp. paratuberculosis (MAP) in cattle and other ruminants. However, progress in controlling the spread of MAP infection has been impeded by the lack of reliable diagnostic tests that can identify animals early in the infection process and help break the transmission chain. To identify reliable antigens for early diagnosis of MAP infection, we constructed a MAP protein array with 868 purified recombinant MAP proteins, and screened a total of 180 well-characterized serum samples from cows assigned to 4 groups based on previous serological and fecal test results: negative low exposure (NL, n = 30); negative high exposure (NH, n = 30); fecal- positive, ELISA-negative (F + E−, n = 60); and both fecal- and ELISA-positive (F + E+, n = 60). The analyses identified a total of 49 candidate antigens in the NH, F + E−, and F + E+ with reactivity compared with the NL group (p \u3c 0.01), a majority of which have not been previously identified. While some of the antigens were identified as reactive in only one of the groups, others showed reactivity in multiple groups, including NH (n = 28), F + E− (n = 26), and F + E+ (n = 17) groups. Using combinations of top reactive antigens in each group, the results reveal sensitivities of 60.0%, 73.3%, and 81.7% in the NH, F + E−, and F + E+, respectively at 90% specificity, suggesting that early detection of infection in animals may be possible and enable better opportunities to reduce within herd transmission that may be otherwise missed by traditional serological assays that are biased towards more heavily infected animals. Together, the results suggest that several of the novel candidate antigens identified in this study, particularly those that were reactive in the NH and F + E− groups, have potential utility for the early sero-diagnosis of MAP infection

    Innate Immune Genes Associated With Newcastle Disease Virus Load in Chick Embryos From Inbred and Outbred Lines

    Get PDF
    This research article was published by Frontiers in Microbiology in 2019Newcastle disease virus (NDV) causes substantial economic losses to smallholder farmers in low- and middle-income countries with high levels of morbidity and mortality in poultry flocks. Previous investigations have suggested differing levels of susceptibility to NDV between specific inbred lines and amongst breeds of chickens, however, the mechanisms contributing to this remain poorly understood. Studies have shown that some of these differences in levels of susceptibility to NDV infection may be accounted for by variability in the innate immune response amongst various breeds of poultry to NDV infection. Recent studies, in inbred Fayoumi and Leghorn lines, uncovered conserved, breed-dependent, and subline-dependent responses. To better understand the role of innate immune genes in engendering a protective immune response, we assessed the transcriptional responses to NDV of three highly outbred Tanzanian local chicken ecotypes, the Kuchi, the Morogoro Medium, and the Ching’wekwe. Hierarchical clustering and principal coordinate analysis of the gene expression profiles of 21-day old chick embryos infected with NDV clustered in an ecotype-dependent manner and was consistent with the relative viral loads for each of the three ecotypes. The Kuchi and Morogoro Medium exhibit significantly higher viral loads than the Ching’wekwe. The results show that the outbred ecotypes with increased levels of expression of CCL4, NOS2, and SOCS1 also had higher viral loads. The higher expression of SOCS1 is inconsistent with the expression in inbred lines. These differences may uncover new mechanisms or pathways in these populations that may have otherwise been overlooked when examining the response in highly inbred lines. Taken together, our findings provide insights on the specific conserved and differentially expressed innate immune-related genes involved the response of highly outbred chicken lines to NDV. This also suggests that several of the specific innate immunity related genes identified in the current investigation may serve as markers for the selection of chickens with reduced susceptibility to NDV

    Sequences related to Chimay rhabdovirus are widely distributed in Ixodes ricinus ticks across England and Wales

    Get PDF
    Ticks are the main arthropod vector of pathogens to humans and livestock in the British Isles. Despite their role as a vector of disease, many aspects of tick biology, ecology, and microbial association are poorly understood. To address this, we investigated the composition of the microbiome of adult and nymphal Ixodes ricinus ticks. The ticks were collected on a dairy farm in Southwest England and RNA extracted for whole genome sequencing. Sequences were detected from a range of microorganisms, particularly tick-associated viruses, bacteria, and nematodes. A majority of the viruses were attributed to phlebo-like and nairo-like virus groups, demonstrating a high degree of homology with the sequences present in I. ricinus from mainland Europe. A virus sharing a high sequence identity with Chimay rhabdovirus, previously identified in ticks from Belgium, was detected. Further investigations of I. ricinus ticks collected from additional sites in England and Wales also identified Chimay rhabdovirus viral RNA with varying prevalence in all tick populations. This suggests that Chimay rhabdovirus has a wide distribution and highlights the need for an extended exploration of the tick microbiome in the United Kingdom (UK)
    • …
    corecore