80 research outputs found

    Пейзаж как важнейший компонент раскрытия личности персонажей

    Get PDF
    Актуальным и необходимым для изучения и раскрытия особенностей личности является пейзаж. Описание пейзажа в повести “Саба ола, хайыр ола” играет особую роль, поскольку насыщает его аллегорическим и сакральным смыслом сакральный

    Response to chemotherapy, reexposure to crizotinib and treatment with a novel ALK inhibitor in a patient with acquired crizotinib resistance

    Get PDF
    The treatment of advanced non-small cell lung cancer (NSCLC) has dramatically changed over the last decade. It has developed from an unspecific approach based on platinum doublet chemotherapy to a personalized, molecularly targeted therapy. Crizotinib is a new tyrosine kinase inhibitor approved for the treatment of NSCLC with gene rearrangement of EML4 and ALK. Despite good initial responses, patients treated with crizotinib relapse after an average of 10 months. In this case report, we present a patient with acquired crizotinib resistance whose adenocarcinoma responded to a second course of crizotinib following a drug holiday and chemotherapy with pemetrexed. This is the second case report to suggest that retreatment with crizotinib is an option for patients with initial benefit from ALK inhibition

    The Advocate

    Get PDF
    Headlines Include: Laurels For Feerick: An Alumnus To Remember; Crime at Fordham; Who\u27s Next?, Film at 11https://ir.lawnet.fordham.edu/student_the_advocate/1007/thumbnail.jp

    Mass-dependent Selenium Isotopic Fractionation during Microbial Reduction of Seleno-oxyanions by Phylogenetically Diverse Bacteria

    Get PDF
    Selenium (Se) isotope fractionation has been widely used for constraining redox conditions and microbial processes in both modern and ancient environments, but our knowledge of the controls on fractionation during microbial reduction of Se-oxyanions is based on a limited number of studies. Here we complement and expand the currently available pure culture data for Se isotope fractionation by investigating for the first time six phylogenetically and physiologically non-respiring bacterial strains that reduce Se-oxyanions to elemental Se [Se(0)]. Experiments were performed with either selenate [Se(VI)] or selenite [Se(IV)] at lower, more environmentally-relevant concentrations (9 to 47 μM) than previously investigated. Enterobacter cloacae SLD1a-1, Desulfitobacterium chlororespirans Co23 and Desulfitobacterium sp. Viet-1 were incubated with Se(VI) and Se(IV). Geobacter sulfurreducens PCA, Anaeromyxobacter dehalogenans FRC-W and Shewanella sp. (NR) were examined for their ability reducing Se(IV) to Se(0). Our data confirm that microbial reduction of both Se-oxyanions is accompanied by large kinetic isotopic fractionation (reported as 82/76ε =1000*(82/76α-1) ‰). Under our experimental conditions, microbial reduction of Se(VI) shows consistently greater isotope fractionation (ε= -9.2‰ to -11.8‰) than reduction of Se(IV) (ε= -6.2 to -7.8‰) confirming the difference in metabolic pathways for the reduction of the two Se-oxyanions. For Se(VI), the inverse relationship between normalized cell specific reduction rate (cSRR) and Se isotope fractionation suggests that the kinetic isotope effect for Se(VI) reduction is governed by an enzymatically-specific pathway related to the bacterial strain-specific physiology. In contrast, the lack of correlation between normalized cSRR and isotope fractionation for Se(IV) reduction indicates a non-enzyme specific pathway which is dominantly extracellular. Our study highlights the importance to understand microbially-mediated Se isotope fractionation depending on Se species, and cell-specific reduction rates before Se isotope ratios can become a fully applicable tool to interpret Se isotopic changes in modern and ancient environments

    Se Isotopes as Groundwater Redox Indicators:Detecting Natural Attenuation of Se at an in Situ Recovery U Mine

    Get PDF
    One of the major ecological concerns associated with the in situ recovery (ISR) of uranium (U) is the environmental release of soluble, toxic selenium (Se) oxyanions generated by mining. Post-mining natural attenuation by the residual reductants in the ore body and reduced down-gradient sediments should mitigate the risk of Se contamination in groundwater. In this work, we investigate the Se concentrations and Se isotope systematics of groundwater and of U ore bearing sediments from an ISR site at Rosita, TX, USA. Our results show that selenate (Se­(VI)) is the dominant Se species in Rosita groundwater, and while several up-gradient wells have elevated Se­(VI), the majority of the ore zone and down-gradient wells have little or no Se oxyanions. In addition, the δ<sup>82</sup>Se<sub>VI</sub> of Rosita groundwater is generally elevated relative to the U ore up to +6.14‰, with the most enriched values observed in the ore-zone wells. Increasing δ<sup>82</sup>Se with decreasing Se­(VI) conforms to a Rayleigh type distillation model with an ε of −2.25‰ ± 0.61‰, suggesting natural Se­(VI) reduction occurring along the hydraulic gradient at the Rosita ISR site. Furthermore, our results show that Se isotopes are excellent sensors for detecting and monitoring post-mining natural attenuation of Se oxyanions at ISR sites

    The sodium iodide symporter (NIS) as theranostic gene: its emerging role in new imaging modalities and non-viral gene therapy

    Get PDF
    Cloning of the sodium iodide symporter (NIS) in 1996 has provided an opportunity to use NIS as a powerful theranostic transgene. Novel gene therapy strategies rely on image-guided selective NIS gene transfer in non-thyroidal tumors followed by application of therapeutic radionuclides. This review highlights the remarkable progress during the last two decades in the development of the NIS gene therapy concept using selective non-viral gene delivery vehicles including synthetic polyplexes and genetically engineered mesenchymal stem cells. In addition, NIS is a sensitive reporter gene and can be monitored by high resolution PET imaging using the radiotracers sodium [ 124 I]iodide ([ 124 I]NaI) or [ 18 F]tetrafluoroborate ([ 18 F]TFB). We performed a small preclinical PET imaging study comparing sodium [ 124 I]iodide and in-house synthesized [ 18 F]TFB in an orthotopic NIS-expressing glioblastoma model. The results demonstrated an improved image quality using [ 18 F]TFB. Building upon these results, we will be able to expand the NIS gene therapy approach using non-viral gene delivery vehicles to target orthotopic tumor models with low volume disease, such as glioblastoma
    corecore