129 research outputs found

    Barriers and Benefits Associated with Nurses Information Seeking Related to Patient Education Needs on Clinical Nursing Units

    Get PDF
    The purpose of this study was to answer the following two questions: What are clinical nurses’ rationales for their approaches to finding patient educational materials on the web? What are perceived barriers and benefits associated with the use of web-based information resources for patient education in the context of nursing clinical practice

    Easily fabricated ion source for characterizing mixtures of organic compounds by direct analysis in real time mass spectrometry

    Get PDF
    The increasing use of atmospheric pressure mass spectrometry has led to the development of many ambient ionization sources, for which sampling versatility and low cost are desired features. One such recent ambient ionization method is direct analysis in real time mass spectrometry (DART-MS), which has proven to be well suited to the analysis of native samples of both simple and complex natures. We describe a home-built DART source (EZ-DART) with versatile sampling capabilities, low power requirements, and low assembly cost which can be easily interfaced to mass spectrometers equipped with an atmospheric pressure inlet. The operating temperature range (22–250 °C) enables the acquisition of both temperature programmed desorption-based DART mass spectra and the collection of multistep collision-induced dissociation (CID) mass spectra. We present here the validation of the EZ-DART source and a demonstration of its performance in a number of relevant applications. Additionally, we introduce the new DART application of reagent assisted desorption ionization (RADI) for the targeting of specific chemical functionality in complex organic mixtures through a host–guest chemical system

    Genetic analysis and prevalence studies of the brp exopolysaccharide locus of Vibrio vulnificus

    Get PDF
    Phase variation in the Gram-negative human pathogen Vibrio vulnificus involves three colonial morphotypes- smooth opaque colonies due to production of capsular polysaccharide (CPS), smooth translucent colonies as the result of little or no CPS expression, and rugose colonies due to production of a separate extracellular polysaccharide (EPS), which greatly enhances biofilm formation. Previously, it was shown that the brp locus, which consists of nine genes arranged as an operon, is up-regulated in rugose strains in a c-di-GMP-dependent manner, and that plasmid insertions into the locus resulted in loss of rugosity and efficient biofilm production. Here, we have used non-polar mutagenesis to assess the involvement of individual brp genes in production of EPS and related phenotypes. Inactivation of genes predicted to be involved in various stages of EPS biosynthesis eliminated both the rugose colonial appearance and production of EPS, while knockout of a predicted flippase function involved in EPS transport resulted in a dry, lightly striated phenotype, which was associated with a reduction of brp-encoded EPS on the cell surface. All brp mutants retained the reduced motility characteristic of rugose strains. Lastly, we provide evidence that the brp locus is highly prevalent among strains of V. vulnificus. © 2014 Garrison-Schilling et al

    Discontinuities in hygroscopic growth below and above water saturation for laboratory surrogates of oligomers in organic atmospheric aerosols

    Get PDF
    Discontinuities in apparent hygroscopicity below and above water saturation have been observed for organic and mixed organic–inorganic aerosol particles in both laboratory studies and in the ambient atmosphere. However, uncertainty remains regarding the factors that contribute to observations of low hygroscopic growth below water saturation but enhanced cloud condensation nuclei (CCN) activity for a given aerosol population. Utilizing laboratory surrogates for oligomers in atmospheric aerosols, we explore the extent to which such discontinuities are influenced by organic component molecular mass and viscosity, non-ideal thermodynamic interactions between aerosol components, and the combination of these factors. Measurements of hygroscopic growth under subsaturated conditions and the CCN activity of aerosols comprised of polyethylene glycol (PEG) with average molecular masses ranging from 200 to 10 000 g mol⁻¹ and mixtures of PEG with ammonium sulfate (AS) were conducted. Experimental results are compared to calculations of hygroscopic growth at thermodynamic equilibrium conducted with the Aerosol Inorganic Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model, and the potential influence of kinetic limitations on observed water uptake was further explored through estimations of water diffusivity in the PEG oligomers. Particle-phase behavior, including the prevalence of liquid–liquid phase separation (LLPS), was also modeled with AIOMFAC. Under subsaturated relative humidity (RH) conditions, we observed little variability in hygroscopic growth across PEG systems with different molecular masses; however, an increase in CCN activity with increasing PEG molecular mass was observed. This effect is most pronounced for PEG–AS mixtures, and, in fact, an enhancement in CCN activity was observed for the PEG10000–AS mixture as compared to pure AS, as evidenced by a 15 % reduction in critical activation diameter at a supersaturation of 0.8 %. We also observed a marked increase in apparent hygroscopicity for mixtures of higher molecular mass PEG and AS under supersaturated conditions as compared to subsaturated hygroscopic growth. AIOMFAC-based predictions and estimations of water diffusivity in PEG suggest that such discontinuities in apparent hygroscopicity above and below water saturation can be attributed, at least in part, to differences in the sensitivity of water uptake behavior to surface tension effects. There is no evidence that kinetic limitations to water uptake due to the presence of viscous aerosol components influenced hygroscopic growth. For the systems that display an enhancement in apparent hygroscopicity above water saturation, LLPS is predicted to persist to high RH. This indicates a miscibility gap and is likely to influence bulk-to-surface partitioning of PEG at high RH, impacting droplet surface tension and CCN activity. This work provides insight into the factors likely to be contributing to discontinuities in aerosol water-uptake behavior below and above water saturation that have been observed previously in the ambient atmosphere

    Formation of highly oxygenated low-volatility products from cresol oxidation

    Get PDF
    Hydroxyl radical (OH) oxidation of toluene produces ring-retaining products: cresol and benzaldehyde, and ring-opening products: bicyclic intermediate compounds and epoxides. Here, first- and later-generation OH oxidation products from cresol and benzaldehyde are identified in laboratory chamber experiments. For benzaldehyde, first-generation ring-retaining products are identified, but later-generation products are not detected. For cresol, low-volatility (saturation mass concentration, C* ∼ 3.5  ×  10^4 − 7.7  ×  10^(−3) µg m^(−3)), first- and later-generation ring-retaining products are identified. Subsequent OH addition to the aromatic ring of o-cresol leads to compounds such as hydroxy, dihydroxy, and trihydroxy methyl benzoquinones and dihydroxy, trihydroxy, tetrahydroxy, and pentahydroxy toluenes. These products are detected in the gas phase by chemical ionization mass spectrometry (CIMS) and in the particle phase using offline direct analysis in real-time mass spectrometry (DART-MS). Our data suggest that the yield of trihydroxy toluene from dihydroxy toluene is substantial. While an exact yield cannot be reported as authentic standards are unavailable, we find that a yield for trihydroxy toluene from dihydroxy toluene of ∼ 0.7 (equal to the reported yield of dihydroxy toluene from o-cresol; Olariu et al., 2002) is consistent with experimental results for o-cresol oxidation under low-NO conditions. These results suggest that even though the cresol pathway accounts for only ∼ 20 % of the oxidation products of toluene, it is the source of a significant fraction (∼ 20–40 %) of toluene secondary organic aerosol (SOA) due to the formation of low-volatility products

    Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation

    Get PDF
    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process

    Isoprene NO_3 Oxidation Products from the RO_2 + HO_2 Pathway

    Get PDF
    We describe the products of the reaction of the hydroperoxy radical (HO_2) with the alkylperoxy radical formed following addition of the nitrate radical (NO_3) and O_2 to isoprene. NO_3 adds preferentially to the C_1 position of isoprene (>6 times more favorably than addition to C_4), followed by the addition of O_2 to produce a suite of nitrooxy alkylperoxy radicals (RO_2). At an RO_2 lifetime of ∼30 s, δ-nitrooxy and β-nitrooxy alkylperoxy radicals are present in similar amounts. Gas-phase product yields from the RO_2 + HO_2 pathway are identified as 0.75–0.78 isoprene nitrooxy hydroperoxide (INP), 0.22 methyl vinyl ketone (MVK) + formaldehyde (CH_2O) + hydroxyl radical (OH) + nitrogen dioxide (NO_2), and 0–0.03 methacrolein (MACR) + CH_2O + OH + NO_2. We further examined the photochemistry of INP and identified propanone nitrate (PROPNN) and isoprene nitrooxy hydroxyepoxide (INHE) as the main products. INHE undergoes similar heterogeneous chemistry as isoprene dihydroxy epoxide (IEPOX), likely contributing to atmospheric secondary organic aerosol formation

    Real-Time Studies of Iron Oxalate-Mediated Oxidation of Glycolaldehyde as a Model for Photochemical Aging of Aqueous Tropospheric Aerosols

    Get PDF
    The complexation of iron (III) with oxalic acid in aqueous solution yields a strongly absorbing chromophore that undergoes efficient photodissociation to give iron (II) and the carbon dioxide anion radical. Importantly, iron (III) oxalate complexes absorb near-UV radiation (λ > 350 nm), providing a potentially powerful source of oxidants in aqueous tropospheric chemistry. Although this photochemical system has been studied extensively, the mechanistic details associated with its role in the oxidation of dissolved organic matter within aqueous aerosol remain largely unknown. This study utilizes glycolaldehyde as a model organic species to examine the oxidation pathways and evolution of organic aerosol initiated by the photodissociation of aqueous iron (III) oxalate complexes. Hanging droplets (radius 1 mm) containing iron (III), oxalic acid, glycolaldehyde, and ammonium sulfate (pH ~ 3) are exposed to irradiation at 365 nm and sampled at discrete time points utilizing field-induced droplet ionization mass spectrometry (FIDI-MS). Glycolaldehyde is found to undergo rapid oxidation to form glyoxal, glycolic acid, and glyoxylic acid, but the formation of high molecular weight oligomers is not observed. For comparison, particle-phase experiments conducted in a laboratory chamber explore the reactive uptake of gas-phase glycolaldehyde onto aqueous seed aerosol containing iron and oxalic acid. The presence of iron oxalate in seed aerosol is found to inhibit aerosol growth. These results suggest that photodissociation of iron (III) oxalate can lead to the formation of volatile oxidation products in tropospheric aqueous aerosols
    corecore