50 research outputs found

    The freshwater jellyfish Craspedacusta sowerbii Lankester, 1880 (Limnomedusa: Olindiidae) in Germany, with a brief note on its nomenclature

    Get PDF
    The freshwater jellyfish Craspedacusta sowerbii Lankester is distributed worldwide in temperate, freshwater habitats. However, such a successful, worldwide dispersion of the medusa and its minute, less obvious polyp is unique among the freshwater jellyfish species (Limnomedusae, Olinidiae). Although numerous reports were given shortly after its discovery, the interest did not cease over the years. In cooperation with the German Underwater Federation (Verband Deutscher Sporttaucher e. V.) additional data of freshwater jellyfish occurrences could be obtained. In combination with previously published discovery reports, these data provide an area- wide observation of the distribution of freshwater jellyfish within the Federal Republic of Germany, adding 21 to the previously known C. sowerbii locations. Indications are that there is a far more wide spread distribution of the medusa than thought and the potentially even wider distribution of the often times overlooked polyp

    Diving as a Scientist: Training, Recognition, Occupation - The “Science Diver” Project

    Get PDF
    Conducting scientific work underwater is a challenging endeavor. From collecting samples to protecting underwater cultural heritage sites scientific divers need to address issues concerning scientific methodology, diving safety, professional acknowledgement, training, legal implications etc. All of these matters are handled in different ways depending on factors like region, organizations involved, legal framework, diving philosophy etc. producing a diverse framework on scientific diving as a distinct type of underwater work. The ScienceDIVER project’s main objective is to study and analyze this fragmented landscape, in order to provide insight and suggestions towards a commonly accepted framework that will promote scientific diving as a means of forwarding knowledge both within the scientific community and its interaction with the public

    Genomic Analyses of Cryptobiotic Tardigrades

    Get PDF
    Genomics technologies, especially transcriptional profiling, allows comparisons of gene expression within and across different organisms. By the use of the model group Tardigrada, also known as water bear, we try to understand the phenomenon of cryptobiosis. The dry organisms can survive for years without water. When re-exposed to water, the animals rehydrate and come back to life. The expression of genes in response to dehydratation and rehydratation is being examined in our laboratory through the generation of expressed sequence tags (ESTs), representational difference analysis (RDA) and subsequent microarray analysis. Molecular dissection of this complex phenomenom, including gene regulation, will allow the development of techniques for preservation and stabilisation of biological materials in a dried state.Techniken der Genomanalyse, speziell das transkriptionelle Profiling, erlauben uns, Genexpression innerhalb eines und zwischen verschiedenen Organismen zu untersuchen. Wir nutzen als Modell Tardigraden, auch bekannt als BĂ€rtierchen, um das PhĂ€nomen der Kryptobiose besser zu verstehen. Die ausgetrockneten Tiere können Jahre ĂŒberdauern. Wenn man Wasser hinzugibt, rehydrieren die Tiere und werden wieder zum Leben erweckt. In unserem Labor untersuchen wir die Genexpression als Antwort auf das Austrockenen und Rehydrieren mittels Bibliotheken Exprimierter Sequenz Tags (ESTs), ReprĂ€sentativer Differenz Analyse und Mikroarray-Untersuchungen. Die molekulare Analyse des komplexen PhĂ€nomens und seiner Regulation auf Ebene der Gene wird es ermöglichen, Techniken fĂŒr die Konservierung und Stabilisierung von biologischem Material in trockenem Zustand zu entwickeln

    Redescription of Milnesium alpigenum Ehrenberg, 1853 (Tardigrada: Apochela) and a description of Milnesium inceptum sp. nov., a tardigrade laboratory model

    Get PDF
    Intra- and interspecific variability, being at the very core of alpha taxonomy, has been a long-standing topic of debate among tardigrade taxonomists. Early studies tended to assume that tardigrades exhibit wide intraspecific variation. However, with more careful morphological studies, especially those incorporating molecular tools that allow for an independent verification of species identifications based on phenotypic traits, we now recognise that ranges of tardigrade intraspecific variability are narrower, and that differences between species may be more subtle than previously assumed. The taxonomic history of the genus Milnesium, and more specifically that of the nominal species, M. tardigradum described by DoyĂšre in 1840, is a good illustration of the evolution of views on intraspecific variability in tardigrades. The assumption of wide intraspecific variability in claw morphology led Marcus (1928) to synonymise two species with different claw configurations, M. alpigenum and M. quadrifidum, with M. tardigradum. Currently claw configuration is recognised as one of the key diagnostic traits in the genus Milnesium, and the two species suppressed by Marcus have recently been suggested to be valid. In this study, we clarify the taxonomic status of M. alpigenum, a species that for nearly a century was considered invalid. We redescribe M. alpigenum, using a population collected from the locus typicus, by the means of integrative taxonomy, i.e. including light microscopy, scanning electron microscopy, ontogenetic observations, and genetic barcoding. Moreover, the redescription of M. alpigenum allowed us to verify the uncertain taxonomic status of two popular laboratory models that were originally considered to be M. tardigradum; though one was recently reidentified as M. cf. alpigenum. Our analysis showed that both laboratory strains, despite being morphologically and morphometrically nearly identical to M. alpigenum, in fact represent a new species, M. inceptum sp. nov. The two species, being disnguishable only by statistical morphometry and/or DNA sequences, are the first example of pseudocryptic species in tardigrades

    Transcriptome survey of the anhydrobiotic tardigrade Milnesium tardigradum in comparison with Hypsibius dujardini and Richtersius coronifer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The phenomenon of desiccation tolerance, also called anhydrobiosis, involves the ability of an organism to survive the loss of almost all cellular water without sustaining irreversible damage. Although there are several physiological, morphological and ecological studies on tardigrades, only limited DNA sequence information is available. Therefore, we explored the transcriptome in the active and anhydrobiotic state of the tardigrade <it>Milnesium tardigradum </it>which has extraordinary tolerance to desiccation and freezing. In this study, we present the first overview of the transcriptome of <it>M. tardigradum </it>and its response to desiccation and discuss potential parallels to stress responses in other organisms.</p> <p>Results</p> <p>We sequenced a total of 9984 expressed sequence tags (ESTs) from two cDNA libraries from the eutardigrade <it>M. tardigradum </it>in its active and inactive, anhydrobiotic (tun) stage. Assembly of these ESTs resulted in 3283 putative unique transcripts, whereof ~50% showed significant sequence similarity to known genes. The resulting unigenes were functionally annotated using the Gene Ontology (GO) vocabulary. A GO term enrichment analysis revealed several GOs that were significantly underrepresented in the inactive stage. Furthermore we compared the putative unigenes of <it>M. tardigradum </it>with ESTs from two other eutardigrade species that are available from public sequence databases, namely <it>Richtersius coronifer </it>and <it>Hypsibius dujardini</it>. The processed sequences of the three tardigrade species revealed similar functional content and the <it>M. tardigradum </it>dataset contained additional sequences from tardigrades not present in the other two.</p> <p>Conclusions</p> <p>This study describes novel sequence data from the tardigrade <it>M. tardigradum</it>, which significantly contributes to the available tardigrade sequence data and will help to establish this extraordinary tardigrade as a model for studying anhydrobiosis. Functional comparison of active and anhydrobiotic tardigrades revealed a differential distribution of Gene Ontology terms associated with chromatin structure and the translation machinery, which are underrepresented in the inactive animals. These findings imply a widespread metabolic response of the animals on dehydration. The collective tardigrade transcriptome data will serve as a reference for further studies and support the identification and characterization of genes involved in the anhydrobiotic response.</p

    Tardigrade workbench: comparing stress-related proteins, sequence-similar and functional protein clusters as well as RNA elements in tardigrades

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tardigrades represent an animal phylum with extraordinary resistance to environmental stress.</p> <p>Results</p> <p>To gain insights into their stress-specific adaptation potential, major clusters of related and similar proteins are identified, as well as specific functional clusters delineated comparing all tardigrades and individual species (<it>Milnesium tardigradum</it>, <it>Hypsibius dujardini</it>, <it>Echiniscus testudo</it>, <it>Tulinus stephaniae</it>, <it>Richtersius coronifer</it>) and functional elements in tardigrade mRNAs are analysed. We find that 39.3% of the total sequences clustered in 58 clusters of more than 20 proteins. Among these are ten tardigrade specific as well as a number of stress-specific protein clusters. Tardigrade-specific functional adaptations include strong protein, DNA- and redox protection, maintenance and protein recycling. Specific regulatory elements regulate tardigrade mRNA stability such as lox P DICE elements whereas 14 other RNA elements of higher eukaryotes are not found. Further features of tardigrade specific adaption are rapidly identified by sequence and/or pattern search on the web-tool tardigrade analyzer <url>http://waterbear.bioapps.biozentrum.uni-wuerzburg.de</url>. The work-bench offers nucleotide pattern analysis for promotor and regulatory element detection (tardigrade specific; nrdb) as well as rapid COG search for function assignments including species-specific repositories of all analysed data.</p> <p>Conclusion</p> <p>Different protein clusters and regulatory elements implicated in tardigrade stress adaptations are analysed including unpublished tardigrade sequences.</p

    Selective neuronal staining in tardigrades and onychophorans provides insights into the evolution of segmental ganglia in panarthropods

    Get PDF
    Background: Although molecular analyses have contributed to a better resolution of the animal tree of life, the phylogenetic position of tardigrades (water bears) is still controversial, as they have been united alternatively with nematodes, arthropods, onychophorans (velvet worms), or onychophorans plus arthropods. Depending on the hypothesis favoured, segmental ganglia in tardigrades and arthropods might either have evolved independently, or they might well be homologous, suggesting that they were either lost in onychophorans or are a synapomorphy of tardigrades and arthropods. To evaluate these alternatives, we analysed the organisation of the nervous system in three tardigrade species using antisera directed against tyrosinated and acetylated tubulin, the amine transmitter serotonin, and the invertebrate neuropeptides FMRFamide, allatostatin and perisulfakinin. In addition, we performed retrograde staining of nerves in the onychophoran Euperipatoides rowelli in order to compare the serial locations of motor neurons within the nervous system relative to the appendages they serve in arthropods, tardigrades and onychophorans. Results: Contrary to a previous report from a Macrobiotus species, our immunocytochemical and electron microscopic data revealed contralateral fibres and bundles of neurites in each trunk ganglion of three tardigrade species, including Macrobiotus cf. harmsworthi, Paramacrobiotus richtersi and Hypsibius dujardini. Moreover, we identified additional, extra-ganglionic commissures in the interpedal regions bridging the paired longitudinal connectives. Within the ganglia we found serially repeated sets of serotonin- and RFamid-like immunoreactive neurons. Furthermore, our data show that the trunk ganglia of tardigrades, which include the somata of motor neurons, are shifted anteriorly with respect to each corresponding leg pair, whereas no such shift is evident in the arrangement of motor neurons in the onychophoran nerve cords. Conclusions: Taken together, these data reveal three major correspondences between the segmental ganglia of tardigrades and arthropods, including (i) contralateral projections and commissures in each ganglion, (ii) segmentally repeated sets of immunoreactive neurons, and (iii) an anteriorly shifted (parasegmental) position of ganglia. These correspondences support the homology of segmental ganglia in tardigrades and arthropods, suggesting that these structures were either lost in Onychophora or, alternatively, evolved in the tardigrade/arthropod lineage

    Proteomic Analysis of Tardigrades: Towards a Better Understanding of Molecular Mechanisms by Anhydrobiotic Organisms

    Get PDF
    BACKGROUND: Tardigrades are small, multicellular invertebrates which are able to survive times of unfavourable environmental conditions using their well-known capability to undergo cryptobiosis at any stage of their life cycle. Milnesium tardigradum has become a powerful model system for the analysis of cryptobiosis. While some genetic information is already available for Milnesium tardigradum the proteome is still to be discovered. PRINCIPAL FINDINGS: Here we present to the best of our knowledge the first comprehensive study of Milnesium tardigradum on the protein level. To establish a proteome reference map we developed optimized protocols for protein extraction from tardigrades in the active state and for separation of proteins by high resolution two-dimensional gel electrophoresis. Since only limited sequence information of M. tardigradum on the genome and gene expression level is available to date in public databases we initiated in parallel a tardigrade EST sequencing project to allow for protein identification by electrospray ionization tandem mass spectrometry. 271 out of 606 analyzed protein spots could be identified by searching against the publicly available NCBInr database as well as our newly established tardigrade protein database corresponding to 144 unique proteins. Another 150 spots could be identified in the tardigrade clustered EST database corresponding to 36 unique contigs and ESTs. Proteins with annotated function were further categorized in more detail by their molecular function, biological process and cellular component. For the proteins of unknown function more information could be obtained by performing a protein domain annotation analysis. Our results include proteins like protein member of different heat shock protein families and LEA group 3, which might play important roles in surviving extreme conditions. CONCLUSIONS: The proteome reference map of Milnesium tardigradum provides the basis for further studies in order to identify and characterize the biochemical mechanisms of tolerance to extreme desiccation. The optimized proteomics workflow will enable application of sensitive quantification techniques to detect differences in protein expression, which are characteristic of the active and anhydrobiotic states of tardigrades

    Transcriptome Analysis in Tardigrade Species Reveals Specific Molecular Pathways for Stress Adaptations

    Get PDF
    Tardigrades have unique stress-adaptations that allow them to survive extremes of cold, heat, radiation and vacuum. To study this, encoded protein clusters and pathways from an ongoing transcriptome study on the tardigrade Milnesium tardigradum were analyzed using bioinformatics tools and compared to expressed sequence tags (ESTs) from Hypsibius dujardini, revealing major pathways involved in resistance against extreme environmental conditions. ESTs are available on the Tardigrade Workbench along with software and databank updates. Our analysis reveals that RNA stability motifs for M. tardigradum are different from typical motifs known from higher animals. M. tardigradum and H. dujardini protein clusters and conserved domains imply metabolic storage pathways for glycogen, glycolipids and specific secondary metabolism as well as stress response pathways (including heat shock proteins, bmh2, and specific repair pathways). Redox-, DNA-, stress- and protein protection pathways complement specific repair capabilities to achieve the strong robustness of M. tardigradum. These pathways are partly conserved in other animals and their manipulation could boost stress adaptation even in human cells. However, the unique combination of resistance and repair pathways make tardigrades and M. tardigradum in particular so highly stress resistant
    corecore