8 research outputs found

    Illegitimate WNT pathway activation by beta-catenin mutation or autocrine stimulation in T-cell malignancies

    No full text
    Recent studies in mice have shown a role for the canonical WNT pathway in lymphocyte development. Because cancers often arise as a result of aberrant activation of signaling cascades that normally promote the self-renewal and expansion of their progenitor cells, we hypothesized that activation of the WNT pathway might contribute to the pathogenesis of lymphoproliferative disease. Therefore, we screened a large panel (n = 162) of non-Hodgkin lymphomas (NHL), including all major WHO categories, for nuclear expression of beta-catenin, at hallmark of "active" WNT signaling. In 16 lymphomas, mostly of T-lineage origin, nuclear localization of beta-catenin was detected. Interestingly, some of these tumors contained established gain-of-function mutations in the gene encoding beta-catenin (CTNNB1); however, in the majority, mutations in either CTNNB1 or APC were not detected. Functional analysis of WNT signaling in precursor T-lymphoblastic lymphomas/leukemias, the NHL subset in which beta-catenin accumulation was most prevalent. (33% positive), revealed a constitutively activated, but still responsive, WNT pathway, which controlled T-cell factor-mediated gene transcription and cell growth. Our data indicate that activation of the WNT pathway, either by CTNNB1 mutation or autocrine stimulation, plays a role in the pathogenesis of a subset of NHLs, in particular, those of T-cell origi

    Stimulated plasmacytoid dendritic cells impair human T-cell development

    No full text
    Thymic plasmacytoid dendritic cells (pDCs) are located predominantly in the medulla and at the corticomedullary junction, the entry site of bone marrow–derived multipotential precursor cells into the thymus, allowing for interactions between thymic pDCs and precursor cells. We demonstrate that in vitro–generated pDCs stimulated with CpG or virus impaired the development of human autologous CD34+CD1a– thymic progenitor cells into the T-cell lineage. Rescue by addition of neutralizing type I interferon (IFN) antibodies strongly implies that endogenously produced IFN-α/β is responsible for this inhibitory effect. Consistent with this notion, we show that exogenously added IFN-α had a similar impact on IL-7– and Notch ligand–induced development of thymic CD34+CD1a– progenitor cells into T cells, because induction of CD1a, CD4, CD8, and TCR/CD3 surface expression and rearrangements of TCRβ V-DJ gene segments were severely impaired. In addition, IL-7–induced proliferation but not survival of the developing thymic progenitor cells was strongly inhibited by IFN-α. It is evident from our data that IFN-α inhibits the IL-7R signal transduction pathway, although this could not be attributed to interference with either IL-7R proximal (STAT5, Akt/PKB, Erk1/2) or distal (p27kip1, pRb) events

    B-Lymphoblastic Lymphomas Evolving from Follicular Lymphomas Co-Express Surrogate Light Chains and Mutated Gamma Heavy Chains

    Get PDF
    Follicular lymphoma (FL) is an indolent B-cell non-Hodgkin lymphoma able to transform into germinal center-type diffuse large B-cell lymphoma. We describe four extraordinary cases of FL, which progressed to TdT(+)CD20(-) precursor B-lymphoblastic lymphoma (B-LBL). Fluorescence in situ hybridization analysis showed that all four B-LBLs had acquired a MYC translocation on transformation. Comparative genomic hybridization analysis of one case demonstrated that in addition to 26 numerical aberrations that were shared between the FL and B-LBL, deletion of CDKN2A/B and 17q11, 14q32 amplification, and copy-neutral loss of heterozygosity of 9p were gained in the B-LBL cells. Whole-exome sequencing revealed mutations in FMN2, NEB, and SYNE1 and a nonsense mutation in KMT2D, all shared by the FL and B-LBL, and TNFRSF14, SMARCA2, CCND3 mutations uniquely present in the B-LBL. Remarkably, all four FL-B-LBL pairs expressed IgG. In two B-LBLs, evidence was obtained for ongoing rearrangement of IG light chain variable genes and expression of the surrogate light chain. IGHV mutation analysis showed that all FL-B-LBL pairs harbored identical or near-identical somatic mutations. From the somatic gene alterations found in the IG and non-IG genes, we conclude that the FLs and B-LBLs did not develop in parallel from early t(14;18)-positive IG-unmutated precursors, but that the B-LBLs developed from preexistent FL subclones that accumulated additional genetic damag
    corecore