137 research outputs found
Unveiling challenges in real-time PCR strategies for detecting treatment failure: observations from clinical trials on chronic Chagas disease
Chagas disease (CD) caused by Trypanosoma cruzi remains a Neglected Tropical Disease with limited access to diagnosis and treatment, particularly for chronically infected patients. Clinical trials are underway to improve treatment using new drugs or different regimens, and Real-Time PCR is used to assess the parasitological response as a surrogate biomarker. However, PCR-based strategies have limitations due to the complex nature of T. cruzi infection. The parasite exhibits asynchronous replication, different strains and clones, and diverse tissue tropism, making it challenging to determine optimal timeline points for monitoring treatment response. This mini-review explores factors that affect PCR-based monitoring and summarizes the endpoints used in clinical trials for detecting treatment failure. Serial sampling and cumulative PCR results may improve sensitivity in detecting parasitemia and treatment failure in these trials
Congenital Transmission of Trypanosoma cruzi: A Review About the Interactions Between the Parasite, the Placenta, the Maternal and the Fetal/Neonatal Immune Responses
Chagas disease (CD), caused by the protozoan parasite Trypanosoma cruzi, is
considered a neglected tropical disease by the World Health Organization. Congenital
transmission of CD is an increasingly relevant public health problem. It progressively
becomes the main transmission route over others and can occur in both endemic and
non-endemic countries. Though most congenitally infected newborns are asymptomatic
at birth, they display higher frequencies of prematurity, low birth weight, and lower
Apgar scores compared to uninfected ones, and some suffer from severe symptoms.
If not diagnosed and treated, infected newborns are at risk of developing disabling
and life-threatening chronic pathologies later in life. The success or failure of congenital
transmission depends on interactions between the parasite, the placenta, the mother,
and the fetus. We review and discuss here the current knowledge about these
parameters, including parasite virulence factors such as exovesicles, placental tropism,
potential placental defense mechanisms, the placental transcriptome of infected
women, gene polymorphism, and the maternal and fetal/neonatal immune responses,
that might modulate the risk of T. cruzi congenital transmission.This work was supported by the ERANET-LAC grants
ELAC2014/HID-0328 and ERANet17/HLH-0142 (to UK, AO,
AS, and CT), FONDECYT 1190341 (Conicyt, Chile to UK), and
PICT 2015-0074 (FONCyT, Argentina to AS)
Molecular diagnostics for Chagas disease: up to date and novel methodologies
Chagas disease is caused by the parasite Trypanosoma cruzi. It affects 7 million people, mainly in Latin America. Diagnosis is usually made serologically, but at some clinical scenarios serology cannot be used. Then, molecular detection is required for early detection of congenital transmission, treatment response follow up, and diagnosis of immune-suppression reactivation. However, present tests are technically demanding and require well-equipped laboratories which make them unfeasible in low-resources endemic regions
Novel 3D human trophoblast culture to explore T. cruzi infection in the placenta
IntroductionHuman trophoblastic cell lines, such as BeWo, are commonly used in 2D models to study placental Trypanosoma cruzi infections. However, these models do not accurately represent natural infections. Three-dimensional (3D) microtissue cultures offer a more physiologically relevant in vitro model, mimicking tissue microarchitecture and providing an environment closer to natural infections. These 3D cultures exhibit functions such as cell proliferation, differentiation, morphogenesis, and gene expression that resemble in vivo conditions.MethodsWe developed a 3D culture model using the human trophoblastic cell line BeWo and nonadherent agarose molds from the MicroTissues® 3D Petri Dish® system. Both small (12–256) and large (12–81) models were tested with varying initial cell numbers. We measured the diameter of the 3D cultures and evaluated cell viability using Trypan Blue dye. Trophoblast functionality was assessed by measuring β-hCG production via ELISA. Cell fusion was evaluated using confocal microscopy, with Phalloidin or ZO-1 marking cell edges and DAPI staining nuclei. T. cruzi infection was assessed by microscopy and quantitative PCR, targeting the EF1-α gene for T. cruzi and GAPDH for BeWo cells, using three parasite strains: VD (isolated from a congenital Chagas disease infant and classified as Tc VI), and K98 and Pan4 (unrelated to congenital infection and classified as Tc I).ResultsSeeding 1000 BeWo cells per microwell in the large model resulted in comparable cellular viability to 2D cultures, with a theoretical diameter of 408.68 ± 12.65 μm observed at 5 days. Functionality, assessed through β-hCG production, exceeded levels in 2D cultures at both 3 and 5 days. T. cruzi infection was confirmed by qPCR and microscopy, showing parasite presence inside the cells for all three tested strains. The distribution and progression of the infection varied with each strain.DiscussionThis innovative 3D model offers a simple yet effective approach for generating viable and functional cultures susceptible to T. cruzi infection, presenting significant potential for studying the placental microenvironment
Molecular detection and parasite load of Trypanosoma cruzi in digestive tract tissue of Chagas disease patients affected by megacolon
Chagas disease, caused by the Trypanosoma cruzi parasite in the Americas affects similar to 7 million people, 30% with cardiac tissue damage and 10-15% with digestive disorders. In this study, we have developed a protocol to detect the presence of the parasite and estimate its load in resected dysfunctional tissue segments of chronically infected patients with digestive megacolon. We have included samples from 43 individuals, 38/5 with positive/negative serology for Chagas disease and digestive syndromes. Samples of 1.5 to 2.0 cm(2) were taken from different points of the dysfunctional digestive tract in specialized centres in Cochabamba, Bolivia. T. cruzi cultures were performed by inoculation with NNN-LIT culture medium, and genomic material was obtained from the samples for multiplex qPCR with TaqMan probes targeting satellite nuclear DNA. Cultures failed to isolate T. cruzi but qPCR reached a sensitivity of 42.1% (16/38) with all three spots and in triplicate. A new quantification methodology using synthetic satellite DNA as quantitation standard revealed parasite loads ranging from 2.2 x 10(2) to 1.0 x 10(6) satellite DNA copies/mu l. Positive samples from the distal end showed a higher parasite load. The results of the present study strengthen and add further evidence to previous findings in an experimental mouse model of chronic T. cruzi infection, providing a valuable tool to improve scientific knowledge on the relevance of the digestive tract in parasite persistence, and underline the need of a better understanding of host-pathogen interaction in digestive tissues, considering pathophysiology, disease immunology and response to treatment
Evolution of naturally occurring 5'non-coding region variants of Hepatitis C virus in human populations of the South American region
<p>Abstract</p> <p>Background</p> <p>Hepatitis C virus (HCV) has been the subject of intense research and clinical investigation as its major role in human disease has emerged. Previous and recent studies have suggested a diversification of type 1 HCV in the South American region. The degree of genetic variation among HCV strains circulating in Bolivia and Colombia is currently unknown. In order to get insight into these matters, we performed a phylogenetic analysis of HCV 5' non-coding region (5'NCR) sequences from strains isolated in Bolivia, Colombia and Uruguay, as well as available comparable sequences of HCV strains isolated in South America.</p> <p>Methods</p> <p>Phylogenetic tree analysis was performed using the neighbor-joining method under a matrix of genetic distances established under the Kimura-two parameter model. Signature pattern analysis, which identifies particular sites in nucleic acid alignments of variable sequences that are distinctly representative relative to a background set, was performed using the method of Korber & Myers, as implemented in the VESPA program. Prediction of RNA secondary structures was done by the method of Zuker & Turner, as implemented in the <it>mfold </it>program.</p> <p>Results</p> <p>Phylogenetic tree analysis of HCV strains isolated in the South American region revealed the presence of a distinct genetic lineage inside genotype 1. Signature pattern analysis revealed that the presence of this lineage is consistent with the presence of a sequence signature in the 5'NCR of HCV strains isolated in South America. Comparisons of these results with the ones found for Europe or North America revealed that this sequence signature is characteristic of the South American region.</p> <p>Conclusion</p> <p>Phylogentic analysis revealed the presence of a sequence signature in the 5'NCR of type 1 HCV strains isolated in South America. This signature is frequent enough in type 1 HCV populations circulating South America to be detected in a phylogenetic tree analysis as a distinct type 1 sub-population. The coexistence of distinct type 1 HCV subpopulations is consistent with quasispecies dynamics, and suggests that multiple coexisting subpopulations may allow the virus to adapt to its human host populations.</p
Drug discovery for Chagas disease should consider Trypanosoma cruzi strain diversity.
This opinion piece presents an approach to standardisation of an important aspect of Chagas disease drug discovery and development: selecting Trypanosoma cruzi strains for in vitro screening. We discuss the rationale for strain selection representing T. cruzi diversity and provide recommendations on the preferred parasite stage for drug discovery, T. cruzi discrete typing units to include in the panel of strains and the number of strains/clones for primary screens and lead compounds. We also consider experimental approaches for in vitro drug assays. The Figure illustrates the current Chagas disease drug-discovery and development landscape
Practical diagnostic algorithms for Chagas disease: a focus on low resource settings
Introduction: Chagas disease, caused by parasite Trypanosoma cruzi, is the most important neglected tropical disease in the Americas. Two drugs are available for treatment, but access to them is challenging, in part due to complex diagnostic algorithms. These are stage-dependent, involve multiple tests, and are ill-adapted to the reality of vast areas where the disease is endemic. Molecular and serologic tools are used to detect acute and chronic infections, with the performance of the latter showing geographic differences. Breakthroughs in the development of new diagnostic tools include the validation of a loop-mediated isothermal amplification assay for acute infections (T. cruzi-LAMP), and the regional validation of several rapid diagnostic tests (RDTs) for chronic infection, which simplify testing in resource-limited settings. The literature search was carried out in the MEDLINE database until 1 August 2023. Areas covered: This review outlines existing algorithms, and proposes new ones focused on point-of-care testing. Expert opinion: Integrating point-of-care testing into existing diagnostic algorithms in certain endemic areas will increase access to timely diagnosis and treatment. However, additional research is needed to validate the use of these techniques across a wider geography, and to better understand the cost-effectiveness of their large-scale implementation
Subtelomeric I-Scel-Mediated Double-Strand Breaks Are Repaired by Homologous Recombination in Trypanosoma cruzi
Trypanosoma cruzi chromosome ends are enriched in surface protein genes and pseudogenes (e.g., trans-sialidases) surrounded by repetitive sequences. It has been proposed that the extensive sequence variability among members of these protein families could play a role in parasite infectivity and evasion of host immune response. In previous reports we showed evidence suggesting that sequences located in these regions are subjected to recombination. To support this hypothesis we introduced a double-strand break (DSB) at a specific target site in a I cruzi subtelomeric region cloned into an artificial chromosome (pTAC). This construct was used to transfect T. cruzi epimastigotes expressing the I-Scel meganuclease. Examination of the repaired sequences showed that DNA repair occurred only through homologous recombination (HR) with endogenous subtelomeric sequences. Our findings suggest that DSBs in subtelomeric repetitive sequences followed by HR between them may contribute to increased variability in T. cruzi multigene families.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Centroccidental Lisandro Alvarado, Lab Genet Mol Dr Yunis Turbay, Ciencias Salud, Barquisimeto, VenezuelaNIAID, Lab Malaria & Vector Res, NIH, Rockville, MD USAUniv Fed Sao Paulo, Escola Paulista Med, Dept Microbiol Imunol & Parasitol, Sao Paulo, BrazilConsejo Nacl Invest Cient & Tecn, Inst Invest Ingn Genet & Biol Mol, Lab Biol Mol Enfermedad Chagas, Buenos Aires, DF, ArgentinaJ Craig Venter Inst, Dept Infect Dis, Rockville, MD USAFdn Inst Estudios Avanzados, Ctr Biotecnol, Caracas, VenezuelaUniv Estadual Campinas, Fac Ciencias Med, Dept Patol Clin, Campinas, SP, BrazilDepartamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, BrazilFAPESP: 11/51693-0FAPESP: 11/51475-3CNPq: 306591/2015-4Web of Scienc
Chagas' disease in Aboriginal and Creole communities from the Gran Chaco Region of Argentina: Seroprevalence and molecular parasitological characterization
Most indigenous ethnias from Northern Argentina live in rural areas of "the Gran Chaco" region, where Trypanosoma cruzi is endemic. Serological and parasitological features have been poorly characterized in Aboriginal populations and scarce information exist regarding relevant T. cruzi discrete typing units (DTU) and parasitic loads. This study was focused to characterize T. cruzi infection in Qom, Mocoit, Pit'laxá and Wichi ethnias (N = 604) and Creole communities (N = 257) inhabiting rural villages from two highly endemic provinces of the Argentinean Gran Chaco.DNA extracted using Hexadecyltrimethyl Ammonium Bromide reagent from peripheral blood samples was used for conventional PCR targeted to parasite kinetoplastid DNA (kDNA) and identification of DTUs using nuclear genomic markers. In kDNA-PCR positive samples from three rural Aboriginal communities of "Monte Impenetrable Chaqueño", minicircle signatures were characterized by Low stringency single primer-PCR and parasitic loads calculated using Real-Time PCR.Seroprevalence was higher in Aboriginal (47.98%) than in Creole (27.23%) rural communities (Chi square, p = 4.e-8). A low seroprevalence (4.3%) was detected in a Qom settlement at the suburbs of Resistencia city (Fisher Exact test, p = 2.e-21).The kDNA-PCR positivity was 42.15% in Aboriginal communities and 65.71% in Creole populations (Chi square, p = 5.e-4). Among Aboriginal communities kDNA-PCR positivity was heterogeneous (Chi square, p = 1.e-4). Highest kDNA-PCR positivity (79%) was detected in the Qom community of Colonia Aborigen and the lowest PCR positivity in two different surveys at the Wichi community of Misión Nueva Pompeya (33.3% in 2010 and 20.8% in 2014).TcV (or TcII/V/VI) was predominant in both Aboriginal and Creole communities, in agreement with DTU distribution reported for the region. Besides, two subjects were infected with TcVI, one with TcI and four presented mixed infections of TcV plus TcII/VI. Most minicircle signatures clustered according to their original localities, but in a few cases, signatures from one locality clustered with signatures from other village, suggesting circulation of the same strains in the area. Parasitic loads ranged from undetectable to around 50 parasite equivalents/mL, showing higher values than those generally observed in chronic Chagas disease patients living in urban centers of Argentina. Our findings reveal the persistence of high levels of infection in these neglected populations.Fil: Lucero, R. H.. Universidad Nacional del Nordeste; ArgentinaFil: Brusés, B. L.. Universidad Nacional del Nordeste; ArgentinaFil: Cura, Carolina Inés. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Formichelli, L. B.. Universidad Nacional del Nordeste; ArgentinaFil: Juiz, Natalia Anahí. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Fernández, G. J.. Universidad Nacional del Nordeste; ArgentinaFil: Bisio, Margarita María Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Universidad de Buenos Aires; ArgentinaFil: Deluca, Gerardo Daniel. Universidad Nacional del Nordeste; ArgentinaFil: Besuschio, Susana Alicia. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Hernández, D. O.. Universidad Nacional del Nordeste; ArgentinaFil: Schijman, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Universidad de Buenos Aires; Argentin
- …