15 research outputs found

    Shedding light on the D1-like receptors : a fluorescence-based toolbox for visualization of the D1 and D5 receptors

    Get PDF
    Funding: Universitat de Barcelona; Fonds der Chemischen Industrie. Grant Number: 661688; University of Regensburg graduate school “Receptor Dynamics: Emerging Paradigms for Novel Drugs. Grant Number: K-BM-2013-247; Elite Network of Bavaria Deutsche Forschungsgemeinschaft. Grant Numbers: 421152132, SFB1423, SFB1470; Spanish MCIN/AEI/10.13039/501100011033. Grant Number: PID2021-126600OB−I00; European Union Next Generation EU/PRTR.Dopamine D1-like receptors are the most abundant type of dopamine receptors in the central nervous system and, even after decades of discovery, still highly interesting for the study of neurological diseases. We herein describe the synthesis of a new set of fluorescent ligands, structurally derived from D1R antagonist SCH-23390 and labeled with two different fluorescent dyes, as tool compounds for the visualization of D1-like receptors. Pharmacological characterization in radioligand binding studies identified UR-NR435 (25) as a high-affinity ligand for D1-like receptors (pKi (D1R) = 8.34, pKi (D5R) = 7.62) with excellent selectivity towards D2-like receptors. Compound 25 proved to be a neutral antagonist at the D1R and D5R in a Gs heterotrimer dissociation assay, an important feature to avoid receptor internalization and degradation when working with whole cells. The neutral antagonist 25 displayed rapid association and complete dissociation to the D1R in kinetic binding studies using confocal microscopy verifying its applicability for fluorescence microscopy. Moreover, molecular brightness studies determined a single-digit nanomolar binding affinity of the ligand, which was in good agreement with radioligand binding data. For this reason, this fluorescent ligand is a useful tool for a sophisticated characterization of native D1 receptors in a variety of experimental setups.Publisher PDFPeer reviewe

    eGFP-tagged Wnt-3a enables functional analysis of Wnt trafficking and signaling and kinetic assessment of Wnt binding to full-length Frizzled

    Get PDF
    The Wingless/Int1 (Wnt) signaling system plays multiple, essential roles in embryonic development, tissue homeostasis and human diseases. Although many of the underlying signaling mechanisms are becoming clearer, the binding mode, kinetics and selectivity of 19 mammalian WNTs to their receptors of the class Frizzled (FZD1−10_{1-10}) remain obscure. Attempts to investigate Wnt-FZD interactions are hampered by the difficulties in working with Wnt proteins and their recalcitrance to epitope tagging. Here, we used a fluorescently tagged version of mouse Wnt-3a for studying Wnt-FZD interactions. We observed that the enhanced GFP (eGFP) tagged Wnt-3a maintains properties akin to wild-type Wnt-3a in several biologically relevant contexts. The eGFP-tagged Wnt-3a was secreted in an evenness interrupted (EVI)/Wntless-dependent manner, activated Wnt/ÎČ-catenin signaling in 2D and 3D cell culture experiments, promoted axis duplication in Xenopus embryos, stimulated LDL receptor–related protein 6 (LRP6) phosphorylation in cells and associated with exosomes. Further, we used conditioned medium containing eGFP-Wnt-3a to visualize its binding to FZD and to quantify Wnt-FZD interactions in real time in live cells, utilizing a recently established NanoBRET-based ligand binding assay. In summary, the development of a biologically active, fluorescent Wnt-3a reported here opens up the technical possibilities to unravel the intricate biology of Wnt signaling and Wnt-receptor selectivity

    Fluorescent Tools for the Imaging of Dopamine D2‐Like Receptors

    Get PDF
    The family of dopamine D2-like receptors represents an interesting target for a variety of neurological diseases, e. g. Parkinson's disease (PD), addiction, or schizophrenia. In this study we describe the synthesis of a new set of fluorescent ligands as tools for visualization of dopamine D2-like receptors. Pharmacological characterization in radioligand binding studies identified UR-MN212 (20) as a high-affinity ligand for D2-like receptors (pKi (D2longR)=8.24, pKi (D3R)=8.58, pKi (D4R)=7.78) with decent selectivity towards D1-like receptors. Compound 20 is a neutral antagonist in a Go1 activation assay at the D2longR, D3R, and D4R, which is an important feature for studies using whole cells. The neutral antagonist 20, equipped with a 5-TAMRA dye, displayed rapid association to the D2longR in binding studies using confocal microscopy demonstrating its suitability for fluorescence microscopy. Furthermore, in molecular brightness studies, the ligand's binding affinity could be determined in a single-digit nanomolar range that was in good agreement with radioligand binding data. Therefore, the fluorescent compound can be used for quantitative characterization of native D2-like receptors in a broad variety of experimental setups

    Shedding Light on the D1‐Like Receptors: A Fluorescence‐Based Toolbox for Visualization of the D1 and D5 Receptors

    Get PDF
    Dopamine D1-like receptors are the most abundant type of dopamine receptors in the central nervous system and, even after decades of discovery, still highly interesting for the study of neurological diseases. We herein describe the synthesis of a new set of fluorescent ligands, structurally derived from D1R antagonist SCH-23390 and labeled with two different fluorescent dyes, as tool compounds for the visualization of D1-like receptors. Pharmacological characterization in radioligand binding studies identified UR-NR435 (25) as a high-affinity ligand for D1-like receptors (pKi (D1R)=8.34, pKi (D5R)=7.62) with excellent selectivity towards D2-like receptors. Compound 25 proved to be a neutral antagonist at the D1R and D5R in a Gs heterotrimer dissociation assay, an important feature to avoid receptor internalization and degradation when working with whole cells. The neutral antagonist 25 displayed rapid association and complete dissociation to the D1R in kinetic binding studies using confocal microscopy verifying its applicability for fluorescence microscopy. Moreover, molecular brightness studies determined a single-digit nanomolar binding affinity of the ligand, which was in good agreement with radioligand binding data. For this reason, this fluorescent ligand is a useful tool for a sophisticated characterization of native D1 receptors in a variety of experimental setups

    Optical control of the ?2-adrenergic receptor with opto-prop-2: A cis-active azobenzene analog of propranolol

    Get PDF
    In this study, we synthesized and evaluated new photoswitchable ligands for the beta-adrenergic receptors ?1-AR and ?2-AR, applying an azologization strategy to the first-generation beta-blocker propranolol. The resulting compounds (Opto-prop-1, -2, -3) have good photochemical properties with high levels of light-induced trans-cis isomerization (>94%) and good thermal stability (t1/2 > 10 days) of the resulting cis-isomer in an aqueous buffer. Upon illumination with 360-nm light to PSScis, large differences in binding affinities were observed for photoswitchable compounds at ?1-AR as well as ?2-AR. Notably, Opto-prop-2 (VUF17062) showed one of the largest optical shifts in binding affinities at the ?2-AR (587-fold, cis-active), as recorded so far for photoswitches of G protein-coupled receptors. We finally show the broad utility of Opto-prop-2 as a light-dependent competitive antagonist of the ?2-AR as shown with a conformational ?2-AR sensor, by the recruitment of downstream effector proteins and functional modulation of isolated adult rat cardiomyocytes

    Neue optische Methoden zur Messung der Aktivierung von G-Protein-gekoppelten Rezeptoren in Mikrotiter-Platten

    No full text
    G-protein-coupled receptors (GPCRs) regulate diverse physiological processes in the human body and represent prime targets in modern drug discovery. Engagement of different ligands to these membrane-embedded proteins evokes distinct receptor conformational rearrangements that facilitate subsequent receptor-mediated signalling and, ultimately, enable cellular adaptation to altered environmental conditions. Since the early 2000s, the technology of resonance energy transfer (RET) has been exploited to assess these conformational receptor dynamics in living cells and real time. However, to date, these conformational GPCR studies are restricted to single-cell microscopic setups, slowing down the discovery of novel GPCR-directed therapeutics. In this work, we present the development of a novel generalizable high-throughput compatible assay for the direct measurement of GPCR activation and deactivation. By screening a variety of energy partners for fluorescence (FRET) and bioluminescence resonance energy transfer (BRET), we identified a highly sensitive design for an α2A-adrenergic receptor conformational biosensor. This biosensor reports the receptor’s conformational change upon ligand binding in a 96-well plate reader format with the highest signal amplitude obtained so far. We demonstrate the capacity of this sensor prototype to faithfully quantify efficacy and potency of GPCR ligands in intact cells and real time. Furthermore, we confirm its universal applicability by cloning and validating five further equivalent GPCR biosensors. To prove the suitability of this new GPCR assay for screening purposes, we measured the well-accepted Z-factor as a parameter for the assay quality. All tested biosensors show excellent Z-factors indicating outstanding assay quality. Furthermore, we demonstrate that this assay provides excellent throughput and presents low rates of erroneous hit identification (false positives and false negatives). Following this phase of assay development, we utilized these biosensors to understand the mechanism and consequences of the postulated modulation of parathyroid hormone receptor 1 (PTHR1) through receptor activity-modifying protein 2 (RAMP2). We found that RAMP2 desensitizes PTHR1, but not the ÎČ2-adrenergic receptor (ÎČ2AR), for agonist-induced structural changes. This generalizable sensor design offers the first possibility to upscale conformational GPCR studies, which represents the most direct and unbiased approach to monitor receptor activation and deactivation. Therefore, this novel technology provides substantial advantages over currently established methods for GPCR ligand screening. We feel confident that this technology will aid the discovery of novel types of GPCR ligands, help to identify the endogenous ligands of so-called orphan GPCRs and deepen our understanding of the physiological regulation of GPCR function.Die Klasse der G-protein-gekoppelten Rezeptoren (GPCRs) stellt die grĂ¶ĂŸte Familie membranstĂ€ndiger Proteine dar. GPCRs regulieren eine Vielzahl diverser physiologischer Prozesse in eukaryotischen Zellen und kontrollieren so unterschiedliche Zellfunktionen im menschlichen Organismus. Sie stellen die ZelloberflĂ€chenrezeptoren fĂŒr verschiedenartige extrazellulĂ€re Stimuli, wie zum Beispiel Photonen, niedermolekulare chemische Verbindungen, Peptide und Lipide dar. Die Wechselwirkung mit diesen sogenannten Liganden stabilisiert spezifische GPCR-Konformationen. Diese dienen wiederum als Ausgangspunkt fĂŒr nachgeschaltete intrazellulĂ€re Signalkaskaden, die beispielweise ĂŒber membranverankerte G-Proteine vermittelt werden können. WĂ€hrend endogene GPCR-Agonisten diese Signalweiterleitung verstĂ€rken, können andere BiomolekĂŒle wie Lipide, Ionen oder andersartige Membranproteine die Funktion, und damit die Signalweiterleitung der GPCRs modulieren. Aufgrund ihrer Einbindung in eine Vielzahl physiologischer und pathophysiologischer Prozesse, wurden GPCRs schon frĂŒh als Angriffspunkte („Targets“) zur Behandlung verschiedener Erkrankungen erforscht und genutzt. Heutzutage vermitteln etwa 30% aller zugelassenen Arzneistoffe ihre Wirkung ĂŒber G-protein-gekoppelte Rezeptoren. Dennoch wird das große Potential dieser Rezeptorfamilie als Targets fĂŒr medikamentöse Behandlungen noch nicht in vollem Umfang ausgeschöpft. TatsĂ€chlich gibt es fĂŒr mehr als 200 GPCRs, die nicht der olfaktorischen Wahrnehmung dienen, noch keine Arzneistoffe, da wenig ĂŒber deren Pharmakologie und physiologische Bedeutung bekannt ist. Zudem wird die Entwicklung neuartiger GPCR-Liganden erheblich durch das eingeschrĂ€nkte Methodenrepertoire beeintrĂ€chtigt. Alle derzeit etablierten Techniken zur Identifizierung neuer GPCR-Liganden erfassen entweder den Ligand-GPCR-Bindungsprozess, der keine Informationen ĂŒber die tatsĂ€chliche AktivitĂ€t der Verbindung liefert, oder messen weit-nachgeschaltete Signale, wie Änderungen sogenannter „Second-Messenger“-Konzentrationen (meist cAMP oder Calcium) und Reporter-Gen-Expressionslevel. Aufgrund ihrer Entfernung vom eigentlichen Rezeptor-Aktivierungsprozess haben diese Methoden allerdings bedeutende Nachteile und produzieren so hĂ€ufig Falsch-Positive und Falsch-Negative Ergebnisse. Seit den frĂŒhen 2000er wurden GPCR-Konformationssensoren auf Basis von Fluoreszenz-Resonanz-Energie-Transfer (FRET) zur Messung der Ligand-induzierten Rezeptordynamik genutzt. Jedoch wies keiner der bisher entwickelten FRET- oder BRET- (Biolumineszenz-Resonanz-Energie-Transfer) Sensoren ausreichende SignalstĂ€rke auf, um im Hochdurchsatz-Screening (HTS) angewendet werden zu können. Die vorliegende Studie beschreibt das erste GPCR-Sensordesign, das aufgrund seiner exzellenten SignalstĂ€rke im Hochdurchsatz-Verfahren verwendet werden kann. Wir haben 21 unterschiedliche FRET- und BRET-Sensoren des α2A-adrenergen Rezeptors (α2AAR) getestet und dabei die Kombination der kleinen und hellen Luziferase NanoLuciferase (Nluc) mit dem rot-fluoreszierenden HaloTag-Farbstoff 618 als sensitivstes RET-Paar identifiziert. Der α2AARNluc/Halo(618) Biosensor ermöglicht die Messung der AktivitĂ€t und WirkstĂ€rke von α2AAR-Liganden im Mikrotiterplattenformat. Um die universelle Anwendbarkeit dieses Sensordesigns zu prĂŒfen, wurden fĂŒnf weitere Nluc/Halo(618)-basierende Sensoren fĂŒr GPCRs unterschiedlicher Unterfamilien entwickelt. Zudem konnten wir zeigen, dass diese GPCRNluc/Halo(618)-Fusionsproteine weiterhin ihre natĂŒrlichen Signalkaskaden in Gang setzen können und damit die biologische FunktionalitĂ€t dieser Rezeptoren erhalten ist. Außerdem belegt die vorlegende Arbeit, dass diese neue Sensor-Generation zur Messung Ligand-vermittelter Rezeptordynamiken im Hochdurchsatz-Format und zur Untersuchung der GPCR-Regulation durch endogene Modulatoren genutzt werden kann. Zusammenfassend kann gesagt werden, dass wir den ersten HTS-kompatiblen Assay zur Messung der GPCR-KonformationsĂ€nderungen entwickelt haben. Diese Biosensoren erlauben die Charakterisierung neuartiger GPCR-Liganden direkt auf der Rezeptorebene und funktionieren damit unabhĂ€ngig von nachgeschalteter Signalamplifikation oder Überlagerung verschiedener Signalwege, welche die Aussagekraft traditioneller GPCR-Screening-Verfahren hĂ€ufig beeintrĂ€chtigen. Diese Technik kann zur Entdeckung neuartiger GPCR-Arzneistoffe genutzt werden, zu einem besseren VerstĂ€ndnis bisher kaum erforschter Rezeptoren beitragen und der Identifizierung und Charakterisierung potentieller GPCR-Modulatoren dienen

    Isoforms of GPR35 have distinct extracellular N-termini that allosterically modify receptor-transducer coupling and mediate intracellular pathway bias

    No full text
    Within the intestine, the human G protein-coupled receptor (GPCR) GPR35 is involved in oncogenic signaling, bacterial infections, and inflammatory bowel disease. GPR35 is known to be expressed as two distinct isoforms that differ only in the length of their extracellular N-termini by 31 amino acids, but detailed insights into their functional differences are lacking. Through gene expression analysis in immune and gastrointestinal cells, we show that these isoforms emerge from distinct promoter usage and alternative splicing. Additionally, we employed optical assays in living cells to thoroughly profile both GPR35 isoforms for constitutive and ligand-induced activation and signaling of 10 different heterotrimeric G proteins, ligand-induced arrestin recruitment, and receptor internalization. Our results reveal that the extended N-terminus of the long isoform limits G protein activation yet elevates receptor-beta-arrestin interaction. To better understand the structural basis for this bias, we examined structural models of GPR35 and conducted experiments with mutants of both isoforms. We found that a proposed disulfide bridge between the N-terminus and extracellular loop 3, present in both isoforms, is crucial for constitutive G(13) activation, while an additional cysteine contributed by the extended N-terminus of the long GPR35 isoform limits the extent of agonist-induced receptor-beta-arrestin2 interaction. The pharmacological profiles and mechanistic insights of our study provide clues for the future design of isoform-specific GPR35 ligands that selectively modulate GPR35-transducer interactions and allow for mechanism-based therapies against, for example, inflammatory bowel disease or bacterial infections of the gastrointestinal system

    Functional modulation of PTH1R activation and signaling by RAMP2

    Get PDF
    Receptor-activity-modifying proteins (RAMPs) are ubiquitously expressed membrane proteins that associate with different G protein–coupled receptors (GPCRs), including the parathyroid hormone 1 receptor (PTH1R), a class B GPCR and an important modulator of mineral ion homeostasis and bone metabolism. However, it is unknown whether and how RAMP proteins may affect PTH1R function. Using different optical biosensors to measure the activation of PTH1R and its downstream signaling, we describe here that RAMP2 acts as a specific allosteric modulator of PTH1R, shifting PTH1R to a unique preactivated state that permits faster activation in a ligand-specific manner. Moreover, RAMP2 modulates PTH1R downstream signaling in an agonist-dependent manner, most notably increasing the PTH-mediated Gi3 signaling sensitivity. Additionally, RAMP2 increases both PTH- and PTHrP-triggered ÎČ-arrestin2 recruitment to PTH1R. Employing homology modeling, we describe the putative structural molecular basis underlying our functional findings. These data uncover a critical role of RAMPs in the activation and signaling of a GPCR that may provide a new venue for highly specific modulation of GPCR function and advanced drug design

    A Versatile Sub-Nanomolar Fluorescent Ligand Enables NanoBRET Binding Studies and Single-Molecule Microscopy at the Histamine H3 Receptor

    No full text
    The histamine H3 receptor (H3R) is considered an attractive drug target for various neurological diseases. We here report the synthesis of UR-NR266, a novel fluorescent H3R ligand. Broad pharmacological characterization revealed UR-NR266 as a sub-nanomolar compound at the H3R with an exceptional selectivity profile within the histamine receptor family. The presented neutral antagonist showed fast association to its target and complete dissociation in kinetic binding studies. Detailed characterization of standard H3R ligands in NanoBRET competition binding using UR-NR266 highlights its value as a versatile pharmacological tool to analyze future H3R ligands. The low nonspecific binding observed in all experiments could also be verified in TIRF and confocal microscopy. This fluorescent probe allows the highly specific analysis of native H3R in various assays ranging from optical high throughput technologies to biophysical analyses and single-molecule studies in its natural environment. An off-target screening at 14 receptors revealed UR-NR266 as a selective compound

    Fluorescent tools for the imaging of dopamine D<sub>2</sub>-like receptors

    No full text
    The family of dopamine D2-like receptors represents an interesting target for a variety of neurological diseases, e. g. Parkinson's disease (PD), addiction, or schizophrenia. In this study we describe the synthesis of a new set of fluorescent ligands as tools for visualization of dopamine D2-like receptors. Pharmacological characterization in radioligand binding studies identified UR-MN212 (20) as a high-affinity ligand for D2-like receptors (pKi (D2longR)=8.24, pKi (D3R)=8.58, pKi (D4R)=7.78) with decent selectivity towards D1-like receptors. Compound 20 is a neutral antagonist in a Go1 activation assay at the D2longR, D3R, and D4R, which is an important feature for studies using whole cells. The neutral antagonist 20, equipped with a 5-TAMRA dye, displayed rapid association to the D2longR in binding studies using confocal microscopy demonstrating its suitability for fluorescence microscopy. Furthermore, in molecular brightness studies, the ligand's binding affinity could be determined in a single-digit nanomolar range that was in good agreement with radioligand binding data. Therefore, the fluorescent compound can be used for quantitative characterization of native D2-like receptors in a broad variety of experimental setups
    corecore