272 research outputs found

    Alteration of hyaloclastites in the HSDP 2 Phase 1 Drill Core 1. Description and paragenesis

    Get PDF
    This is the publisher's version. Copyright 2003 by Chinese Geophysical Society. All rights reserved.The core from the Hawaii Scientific Drilling Project 2 Phase 1 provides a unique opportunity for studying the low-temperature alteration processes affecting basalt in suboceanic-island environments. In hyaloclastites, which make up about one half of the lower 2 km of this core (the portion that accumulated below sea level), these processes have resulted in zones of incipient, smectitic, and palagonitic alteration. The alteration of sideromelane in these hyaloclastites has four distinct outcomes: dissolution, replacement by two different textural varieties of smectite (i.e., reddened and green grain-replacive), and conversion to palagonite. All samples show evidence of the incipient stage of alteration, suggesting that every sample passed through that zone. However, most samples that show palagonitic alteration do not also show evidence of smectitic alteration and vice versa, suggesting these two outcomes represent divergent paths of alteration. Incipient alteration (1080 to 1335 m depth) includes fracturing and mechanical reduction of porosity from 40–45% to about 20–30%; growth of one form of pore-lining smectite; dissolution of sideromelane; and formation of sideromelane-grain replacements consisting of Fe-hydroxide-strained smectite, titaniferous nodules, and tubules. DNA-specific stains and morphological features indicate that tubules are the result of microbial activity. Smectitic alteration (1405 to 1573 m) includes growth of a second variety of pore-lining smectite, pore-filling and grain-replacing smectite, and cements of phillipsite and Ca-silicate minerals. Palagonitic alteration (1573 m to the deepest samples) includes replacement of margins of shards with palagonite and growth of pore-filling chabazite. The porosity is reduced by cementation to less than 4% at 1573 m. Porosity does not decrease further down hole, nor does the thickness of palagonite rims on shards increase through the zone of palagonitic alteration. In these samples, palagonite is not an intermediate alteration product in the development of smectite. Rather, in hyaloclastites from the HSDP core, palagonite has formed after all observed smectites. Current downhole temperatures at the boundaries between the three alteration zones are in the range from 12° to 15°C, suggesting that geochemical thresholds or vital effects, not temperature conditions, control different outcomes of alteration

    Microbial communities in dark oligotrophic volcanic ice cave ecosystems of Mt. Erebus, Antarctica.

    Get PDF
    The Earth's crust hosts a subsurface, dark, and oligotrophic biosphere that is poorly understood in terms of the energy supporting its biomass production and impact on food webs at the Earth's surface. Dark oligotrophic volcanic ecosystems (DOVEs) are good environments for investigations of life in the absence of sunlight as they are poor in organics, rich in chemical reactants and well known for chemical exchange with Earth's surface systems. Ice caves near the summit of Mt. Erebus (Antarctica) offer DOVEs in a polar alpine environment that is starved in organics and with oxygenated hydrothermal circulation in highly reducing host rock. We surveyed the microbial communities using PCR, cloning, sequencing and analysis of the small subunit (16S) ribosomal and Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (RubisCO) genes in sediment samples from three different caves, two that are completely dark and one that receives snow-filtered sunlight seasonally. The microbial communities in all three caves are composed primarily of Bacteria and fungi; Archaea were not detected. The bacterial communities from these ice caves display low phylogenetic diversity, but with a remarkable diversity of RubisCO genes including new deeply branching Form I clades, implicating the Calvin-Benson-Bassham (CBB) cycle as a pathway of CO2 fixation. The microbial communities in one of the dark caves, Warren Cave, which has a remarkably low phylogenetic diversity, were analyzed in more detail to gain a possible perspective on the energetic basis of the microbial ecosystem in the cave. Atmospheric carbon (CO2 and CO), including from volcanic emissions, likely supplies carbon and/or some of the energy requirements of chemoautotrophic microbial communities in Warren Cave and probably other Mt. Erebus ice caves. Our work casts a first glimpse at Mt. Erebus ice caves as natural laboratories for exploring carbon, energy and nutrient sources in the subsurface biosphere and the nutritional limits on life

    The Wow Factor? A Comparative Study of the Development of Student Music Teachers' Talents in Scotland and Australia

    Get PDF
    For some time there has been debate about differing perspectives on musical gift and musical intelligence. One view is that musical gift is innate: that it is present in certain individuals from birth and that the task of the teacher is to develop the potential which is there. A second view is that musical gift is a complex concept which includes responses from individuals to different environments and communities (Howe and Sloboda, 1997). This then raises the possibility that musical excellence can be taught. We have already explored this idea with practising musicians (Stollery and McPhee, 2002). Our research has now expanded to include music teachers in formation, and, in this paper, we look at the influences in their musical development which have either 'crystallised' or 'paralysed' the musical talent which they possess. Our research has a comparative dimension, being carried out in Scotland and in Australia. We conclude that there are several key influences in the musical development of the individual, including home and community support, school opportunities and teaching styles and that there may be education and culture-specific elements to these influences

    Isotopic Evidence of Hydrothermal Exchange and Seawater Ingress from Alteration Minerals in the Reykjanes Geothermal System: Results from the IDDP

    Get PDF
    ABSTRACT The primary economic objective of the Iceland Deep Drilling Project (IDDP) is to find 450-600°C supercritical geothermal fluids at drillable depths. The Reykjanes geothermal system is a seawater recharged hydrothermal system, although fluid composition has evolved through time as a result of changing proportions of meteoric water influx as well as differing pressure and temperature conditions imposed by glaciation (Arnorsson, 1995

    Hierarchy of resistance to cervical neoplasia mediated by combinations of killer immunoglobulin-like receptor and human leukocyte antigen loci

    Get PDF
    Killer immunoglobulin-like receptor (KIR) recognition of specific human histocompatibility leukocyte antigen (HLA) class I allotypes contributes to the array of receptor–ligand interactions that determine natural killer (NK) cell response to its target. Contrasting genetic effects of KIR/HLA combinations have been observed in infectious and autoimmune diseases, where genotypes associated with NK cell activation seem to be protective or to confer susceptibility, respectively. We show here that combinations of KIR and HLA loci also affect the risk of developing cervical neoplasia. Specific inhibitory KIR/HLA ligand pairs decrease the risk of developing neoplasia, whereas the presence of the activating receptor KIR3DS1 results in increased risk of disease, particularly when the protective inhibitory combinations are missing. These data suggest a continuum of resistance conferred by NK cell inhibition to susceptibility involving NK cell activation in the development of cervical neoplasia and underscore the pervasive influence of KIR/HLA genetic variation in human disease pathogenesis

    \u3ci\u3eSDH5\u3c/i\u3e, a Gene Required for Flavination of Succinate Dehydrogenase, Is Mutated in Paraganglioma

    Get PDF
    Mammalian mitochondria contain about 1100 proteins, nearly 300 of which are uncharacterized. Given the well-established role of mitochondrial defects in human disease, functional characterization of these proteins may shed new light on disease mechanisms. Starting with yeast as a model system, we investigated an uncharacterized but highly conserved mitochondrial protein (named here Sdh5). Both yeast and human Sdh5 interact with the catalytic subunit of the succinate dehydrogenase (SDH) complex, a component of both the electron transport chain and the tricarboxylic acid cycle. Sdh5 is required for SDH-dependent respiration and for Sdh1 flavination (incorporation of the flavin adenine dinucleotide cofactor). Germline loss-of-function mutations in the human SDH5 gene, located on chromosome 11q13.1, segregate with disease in a family with hereditary paraganglioma, a neuroendocrine tumor previously linked to mutations in genes encoding SDH subunits. Thus, a mitochondrial proteomics analysis in yeast has led to the discovery of a human tumor susceptibility gene

    Potential Mechanisms for Cancer Resistance in Elephants and Comparative Cellular Response to DNA Damage in Humans

    Get PDF
    Importance: Evolutionary medicine may provide insights into human physiology and pathophysiology, including tumor biology. Objective: To identify mechanisms for cancer resistance in elephants and compare cellular response to DNA damage among elephants, healthy human controls, and cancer-prone patients with Li-Fraumeni syndrome (LFS). Design, Setting, and Participants: A comprehensive survey of necropsy data was performed across 36 mammalian species to validate cancer resistance in large and long-lived organisms, including elephants (n = 644). The African and Asian elephant genomes were analyzed for potential mechanisms of cancer resistance. Peripheral blood lymphocytes from elephants, healthy human controls, and patients with LFS were tested in vitro in the laboratory for DNA damage response. The study included African and Asian elephants (n = 8), patients with LFS (n = 10), and age-matched human controls (n = 11). Human samples were collected at the University of Utah between June 2014 and July 2015. Exposures: Ionizing radiation and doxorubicin. Main Outcomes and Measures: Cancer mortality across species was calculated and compared by body size and life span. The elephant genome was investigated for alterations in cancer-related genes. DNA repair and apoptosis were compared in elephant vs human peripheral blood lymphocytes. Results: Across mammals, cancer mortality did not increase with body size and/or maximum life span (eg, for rock hyrax, 1% [95% CI, 0%-5%]; African wild dog, 8% [95% CI, 0%-16%]; lion, 2% [95% CI, 0%-7%]). Despite their large body size and long life span, elephants remain cancer resistant, with an estimated cancer mortality of 4.81% (95% CI, 3.14%-6.49%), compared with humans, who have 11% to 25% cancer mortality. While humans have 1 copy (2 alleles) of TP53, African elephants have at least 20 copies (40 alleles), including 19 retrogenes (38 alleles) with evidence of transcriptional activity measured by reverse transcription polymerase chain reaction. In response to DNA damage, elephant lymphocytes underwent p53-mediated apoptosis at higher rates than human lymphocytes proportional to TP53 status (ionizing radiation exposure: patients with LFS, 2.71% [95% CI, 1.93%-3.48%] vs human controls, 7.17% [95% CI, 5.91%-8.44%] vs elephants, 14.64% [95% CI, 10.91%-18.37%]; P \u3c .001; doxorubicin exposure: human controls, 8.10% [95% CI, 6.55%-9.66%] vs elephants, 24.77% [95% CI, 23.0%-26.53%]; P \u3c .001). Conclusions and Relevance: Compared with other mammalian species, elephants appeared to have a lower-than-expected rate of cancer, potentially related to multiple copies of TP53. Compared with human cells, elephant cells demonstrated increased apoptotic response following DNA damage. These findings, if replicated, could represent an evolutionary-based approach for understanding mechanisms related to cancer suppression

    \u3ci\u3eSDH5\u3c/i\u3e, a Gene Required for Flavination of Succinate Dehydrogenase, Is Mutated in Paraganglioma

    Get PDF
    Mammalian mitochondria contain about 1100 proteins, nearly 300 of which are uncharacterized. Given the well-established role of mitochondrial defects in human disease, functional characterization of these proteins may shed new light on disease mechanisms. Starting with yeast as a model system, we investigated an uncharacterized but highly conserved mitochondrial protein (named here Sdh5). Both yeast and human Sdh5 interact with the catalytic subunit of the succinate dehydrogenase (SDH) complex, a component of both the electron transport chain and the tricarboxylic acid cycle. Sdh5 is required for SDH-dependent respiration and for Sdh1 flavination (incorporation of the flavin adenine dinucleotide cofactor). Germline loss-of-function mutations in the human SDH5 gene, located on chromosome 11q13.1, segregate with disease in a family with hereditary paraganglioma, a neuroendocrine tumor previously linked to mutations in genes encoding SDH subunits. Thus, a mitochondrial proteomics analysis in yeast has led to the discovery of a human tumor susceptibility gene

    Algorithms for optimizing drug therapy

    Get PDF
    BACKGROUND: Drug therapy has become increasingly efficient, with more drugs available for treatment of an ever-growing number of conditions. Yet, drug use is reported to be sub optimal in several aspects, such as dosage, patient's adherence and outcome of therapy. The aim of the current study was to investigate the possibility to optimize drug therapy using computer programs, available on the Internet. METHODS: One hundred and ten officially endorsed text documents, published between 1996 and 2004, containing guidelines for drug therapy in 246 disorders, were analyzed with regard to information about patient-, disease- and drug-related factors and relationships between these factors. This information was used to construct algorithms for identifying optimum treatment in each of the studied disorders. These algorithms were categorized in order to define as few models as possible that still could accommodate the identified factors and the relationships between them. The resulting program prototypes were implemented in HTML (user interface) and JavaScript (program logic). RESULTS: Three types of algorithms were sufficient for the intended purpose. The simplest type is a list of factors, each of which implies that the particular patient should or should not receive treatment. This is adequate in situations where only one treatment exists. The second type, a more elaborate model, is required when treatment can by provided using drugs from different pharmacological classes and the selection of drug class is dependent on patient characteristics. An easily implemented set of if-then statements was able to manage the identified information in such instances. The third type was needed in the few situations where the selection and dosage of drugs were depending on the degree to which one or more patient-specific factors were present. In these cases the implementation of an established decision model based on fuzzy sets was required. Computer programs based on one of these three models could be constructed regarding all but one of the studied disorders. The single exception was depression, where reliable relationships between patient characteristics, drug classes and outcome of therapy remain to be defined. CONCLUSION: Algorithms for optimizing drug therapy can, with presumably rare exceptions, be developed for any disorder, using standard Internet programming methods
    corecore