520 research outputs found

    An ultrasound-assisted photocatalytic treatment to remove an herbicidal pollutant from wastewaters

    Get PDF
    Pollutants of emerging concern contaminate surface and ground water. Advanced oxidation processes treat these molecules and degrade them into smaller compounds or mineralization products. However, little information on coupled advanced oxidation techniques and on the degradation pathways of these pollutants is available to identify possible ecotoxic subproducts. In the present work, we investigate the ultrasound assisted photocatalytic degradation pathway of the herbicide Isoproturon. We worked in batch mode in a thermostatic glass reactor. We compared the activity of nanometric TiO2 P25 with that of Kronos 1077, a micrometric TiO2. We discuss the individual, additive and synergistic degradation action of photolysis, sonolysis, sonophotolysis, and sonophotocatalysis by varying catalyst loading and/or ultrasound power for the last three techniques. With 0.1 g L 121 catalyst, photocatalysis and sonophotopcatalysis completely degrade Isoproturon within 240 min and 60 min, respectively (>99% conversion). Sonophotocatalysis breaks Isoproturon down into smaller molecules than photocatalysis alone

    A Rare Disease Patient Manager

    Get PDF
    ABSTRACT publicado: 6th International Conference on Practical Applications of Computational Biology & Bioinformatics (PACBB. Salamanca, 28-30 Março 2012The personal health implications behind rare diseases are seldom considered in widespread medical care. The low incidence rate and complex treatment process makes rare disease research an underrated field in the life sciences. However, it is in these particular conditions that the strongest relations between genotypes and phenotypes are identified. The rare disease patient manager, detailed in this manuscript, presents an innovative perspective for a patient-centric portal integrating genetic and medical data. With this strategy, patient’s digital records are transparently integrated and connected to wet-lab genetics research in a seamless working environment. The resulting knowledge base offers multiple data views, geared towards medical staff, with patient treatment and monitoring data; genetics researchers, through a custom locus-specific database; and patients, who for once play an active role in their treatment and rare diseases research

    Engagement of the rat hindlimb motor cortex across natural locomotor behaviors

    Get PDF
    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor procedures. We found that the activation of hindlimb motor cortex preceded gait initiation. During overground locomotion, the motor cortex exhibited consistent neuronal population responses that were synchronized with the spatiotemporal activation of hindlimb motoneurons. Behaviors requiring enhanced muscle activity or skilled paw placement correlated with substantial adjustment in neuronal population responses. In contrast, all rats exhibited a reduction of cortical activity during more automated behavior, such as stepping on a treadmill. Despite the facultative role of the motor cortex in the production of locomotion in rats, these results show that the encoding of hindlimb features in motor cortex dynamics is comparable in rats and cats. However, the extent of motor cortex modulations appears linked to the degree of volitional engagement and complexity of the task, reemphasizing the importance of goal-directed behaviors for motor control studies, rehabilitation, and neuroprosthetics. © 2016 the authors

    Tizanidine does not affect the linear relation of stretch duration to the long latency M2 response of m. flexor carpi radialis

    Get PDF
    The long latency M2 electromyographic response of a suddenly stretched active muscle is stretch duration dependent of which the nature is unclear. We investigated the influence of the group II afferent blocker tizanidine on M2 response characteristics of the m. flexor carpi radialis (FCR). M2 response magnitude and eliciting probability in a group of subjects receiving 4 mg of tizanidine orally were found to be significantly depressed by tizanidine while tizanidine did not affect the significant linear relation of the M2 response to stretch duration. The effect of tizanidine on the M2 response of FCR is supportive of a group II afferent contribution to a compound response of which the stretch duration dependency originates from a different mechanism, e.g., rebound Ia firing

    Improving Human Plateaued Motor Skill with Somatic Stimulation

    Get PDF
    Procedural motor learning includes a period when no substantial gain in performance improvement is obtained even with repeated, daily practice. Prompted by the potential benefit of high-frequency transcutaneous electrical stimulation, we examined if the stimulation to the hand reduces redundant motor activity that likely exists in an acquired hand motor skill, so as to further upgrade stable motor performance. Healthy participants were trained until their motor performance of continuously rotating two balls in the palm of their right hand became stable. In the series of experiments, they repeated a trial performing this cyclic rotation as many times as possible in 15 s. In trials where we applied the stimulation to the relaxed thumb before they initiated the task, most reported that their movements became smoother and they could perform the movements at a higher cycle compared to the control trials. This was not possible when the dorsal side of the wrist was stimulated. The performance improvement was associated with reduction of amplitude of finger displacement, which was consistently observed irrespective of the task demands. Importantly, this kinematic change occurred without being noticed by the participants, and their intentional changes of motor strategies (reducing amplitude of finger displacement) never improved the performance. Moreover, the performance never spontaneously improved during one-week training without stimulation, whereas the improvement in association with stimulation was consistently observed across days during training on another week combined with the stimulation. The improved effect obtained in stimulation trials on one day partially carried over to the next day, thereby promoting daily improvement of plateaued performance, which could not be unlocked by the first-week intensive training. This study demonstrated the possibility of effectively improving a plateaued motor skill, and pre-movement somatic stimulation driving this behavioral change

    Transmission in Heteronymous Spinal Pathways Is Modified after Stroke and Related to Motor Incoordination

    Get PDF
    Changes in reflex spinal pathways after stroke have been shown to affect motor activity in agonist and antagonist muscles acting at the same joint. However, only a few studies have evaluated the heteronymous reflex pathways modulating motoneuronal activity at different joints. This study investigates whether there are changes in the spinal facilitatory and inhibitory pathways linking knee to ankle extensors and if such changes may be related to motor deficits after stroke. The early facilitation and later inhibition of soleus H reflex evoked by the stimulation of femoral nerve at 2 times the motor threshold of the quadriceps were assessed in 15 healthy participants and on the paretic and the non-paretic sides of 15 stroke participants. The relationships between this reflex modulation and the levels of motor recovery, coordination and spasticity were then studied. Results show a significant (Mann-Whitney U; P<0.05) increase in both the peak amplitude (mean±SEM: 80±22% enhancement of the control H reflex) and duration (4.2±0.5 ms) of the facilitation on the paretic side of the stroke individuals compared to their non-paretic side (36±6% and 2.9±0.4 ms) and to the values of the control subjects (33±4% and 2.8±0.4 ms, respectively). Moreover, the later strong inhibition observed in all control subjects was decreased in the stroke subjects. Both the peak amplitude and the duration of the increased facilitation were inversely correlated (Spearman r = −0.65; P = 0.009 and r = −0.67; P = 0.007, respectively) with the level of coordination (LEMOCOT) of the paretic leg. Duration of this facilitation was also correlated (r = −0.58, P = 0.024) with the level of motor recovery (CMSA). These results confirm changes in transmission in heteronymous spinal pathways that are related to motor deficits after stroke

    Assessing control of postural stability in community-living older adults using performance-based limits of stability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Balance disability measurements routinely used to identify fall risks in frail populations have limited value in the early detection of postural stability deficits in community-living older adults. The objectives of the study were to 1) measure performance-based limits of stability (LOS) in community-living older adults and compare them to theoretical LOS computed from data proposed by the Balance Master<sup>® </sup>system, 2) explore the feasibility of a new measurement approach based on the assessment of postural stability during weight-shifting tasks at performance-based LOS, 3) quantify intra-session performance variability during multiple trials using the performance-based LOS paradigm.</p> <p>Methods</p> <p>Twenty-four healthy community-living older adults (10 men, 14 women) aged between 62 to 85 (mean age ± sd, 71.5 ± 6 yrs) participated in the study. Subjects' performance-based LOS were established by asking them to transfer their body weight as far as possible in three directions (forward, right and left) without changing their base of support. LOS were computed as the maximal excursion of the COP in each direction among three trials. Participants then performed two experimental tasks that consisted in controlling, with the assistance of visual feedback, their centre of pressure (COP) within two predefined targets set at 100% of their performance-based LOS. For each tasks 8 trials were performed. Ground reaction forces and torques during performance-based LOS evaluation and experimental tasks were recorded with a force plate. Sway area and medio-lateral mean COP displacement speed variables were extracted from force plate recordings.</p> <p>Results</p> <p>Significant differences between theoretical LOS computed from maximum leaning angles derived from anthropometric characteristics and performance-based LOS were observed. Results showed that a motor learning effect was present as the participants optimized their weight-shifting strategy through the first three trials of each task using the visual biofeedback provided on their COP. Reliable measures of control of postural stability at performance-based LOS can be obtained after two additional trials after the learning phase (0.69 > ICC > 1.0).</p> <p>Conclusion</p> <p>Establishing performance-based LOS instead of relying on estimations of theoretical LOS offers a more individualized and realistic insight on the true LOS of an individual. Performance-based LOS can be used as targets during weight-shifting postural tasks with real time visual feedback of the COP displacement to assess postural stability of community-living older adults. In order to obtain reliable results, a learning phase allowing subjects to learn how to control their COP displacement is needed.</p

    The RUDY study platform – a novel approach to patient driven research in rare musculoskeletal diseases

    Get PDF
    Background: Research into rare diseases is becoming more common, with recognition of the significant diagnostic and therapeutic care gaps. Registries are considered a key research methodology to address rare diseases. This report describes the structure of the Rare UK Diseases Study (RUDY) platform that aims to improve research processes and address many of the challenges of carrying out rare musculoskeletal disease research. RUDY is an internet-based platform with online registration, initial verbal consent, online capture of patient reported outcome measures and events within a dynamic consent framework. The database structure, security and governance framework are described. Results: There have been 380 participants recruited into RUDY with completed questionnaire rates in excess of 50 %. There has been one withdrawal and two participants have amended their consent options. Conclusions: The strengths of RUDY include low burden for the clinical team, low research administration costs with high participant recruitment and ease of data collection and access. This platform has the potential to be used as the model for other rare diseases globally
    corecore