25 research outputs found

    Cloning, Expression and Purification of an Acetoacetyl CoA Thiolase from Sunflower Cotyledon

    Get PDF
    Thiolase I and II coexist as part of the glyoxysomal β-oxidation system in sunflower (Helianthus annuus L.) cotyledons, the only system shown to have both forms. The importance of thiolases can be underscored not only by their ubiquity, but also by their involvement in a wide variety of processes in plants, animals and bacteria. Here we describe the cloning, expression and purification of acetoacetyl CoA thiolase (AACT) in enzymatically active form. Use of the extensive amount of sequence information from the databases facilitated the efficient generation of the gene-specific primers used in the RACE protocols. The recombinant AACT (1233 bp) shares 75% similarity with other plant AACTs. Comparison of specific activity of this recombinant AACT to a previously reported enzyme purified from primary sunflower cotyledon tissue was very similar (263 nkat/mg protein vs 220 nkat/mg protein, respectively). Combining the most pure fractions from the affinity column, the enzyme was purified 88-fold with a 55% yield of the enzymatically active, 47 kDa AACT

    Non-Phosphorylatable PEA-15 Sensitises SKOV-3 Ovarian Cancer Cells to Cisplatin

    Get PDF
    The efficacy of cisplatin-based chemotherapy in ovarian cancer is often limited by the development of drug resistance. In most ovarian cancer cells, cisplatin activates extracellular signal-regulated kinase1/2 (ERK1/2) signalling. Phosphoprotein enriched in astrocytes (PEA-15) is a ubiquitously expressed protein, capable of sequestering ERK1/2 in the cytoplasm and inhibiting cell proliferation. This and other functions of PEA-15 are regulated by its phosphorylation status. In this study, the relevance of PEA-15 phosphorylation state for cisplatin sensitivity of ovarian carcinoma cells was examined. The results of MTT-assays indicated that overexpression of PEA-15AA (a non-phosphorylatable variant) sensitised SKOV-3 cells to cisplatin. Phosphomimetic PEA-15DD did not affect cell sensitivity to the drug. While PEA-15DD facilitates nuclear translocation of activated ERK1/2, PEA-15AA acts to sequester the kinase in the cytoplasm as shown by Western blot. Microarray data indicated deregulation of thirteen genes in PEA-15AA-transfected cells compared to non-transfected or PEA-15DD-transfected variants. Data derived from The Cancer Genome Atlas (TCGA) showed that the expression of seven of these genes including EGR1 (early growth response protein 1) and FLNA (filamin A) significantly correlated with the therapy outcome in cisplatin-treated cancer patients. Further analysis indicated the relevance of nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) signalling for the favourable effect of PEA-15AA on cisplatin sensitivity. The results warrant further evaluation of the PEA-15 phosphorylation status as a potential candidate biomarker of response to cisplatin-based chemotherapy. View Full-Tex

    Adenosine A2A receptor ligand recognition and signaling is blocked by A2B receptors

    Get PDF
    The adenosine receptor (AR) subtypes A2A and A2B are rhodopsin-like Gs protein-coupled receptors whose expression is highly regulated under pathological, e.g. hypoxic, ischemic and inflammatory conditions. Both receptors play important roles in inflammatory and neurodegenerative diseases, are blocked by caffeine, and have now become major drug targets in immuno-oncology. By Förster resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET), bimolecular fluorescence complementation (BiFC) and proximity ligation assays (PLA) we demonstrated A2A-A2BAR heteromeric complex formation. Moreover we observed a dramatically altered pharmacology of the A2AAR when co-expressed with the A2BAR (A2B ≥ A2A) in recombinant as well as in native cells. In the presence of A2BARs, A2A-selective ligands lost high affinity binding to A2AARs and displayed strongly reduced potency in cAMP accumulation and dynamic mass redistribution (DMR) assays. These results have major implications for the use of A2AAR ligands as drugs as they will fail to modulate the receptor in an A2A-A2B heteromer context. Accordingly, A2A-A2BAR heteromers represent novel pharmacological targets

    [3H]Adenine is a suitable radioligand for the labeling of G protein-coupled adenine receptors but shows high affinity to bacterial contaminations in buffer solutions

    Get PDF
    [3H]Adenine has previously been used to label the newly discovered G protein-coupled murine adenine receptors. Recent reports have questioned the suitability of [3H]adenine for adenine receptor binding studies because of curious results, e.g. high specific binding even in the absence of mammalian protein. In this study, we showed that specific [3H]adenine binding to various mammalian membrane preparations increased linearly with protein concentration. Furthermore, we found that Tris-buffer solutions typically used for radioligand binding studies (50 mM, pH 7.4) that have not been freshly prepared but stored at 4°C for some time may contain bacterial contaminations that exhibit high affinity binding for [3H]adenine. Specific binding is abolished by heating the contaminated buffer or filtering it through 0.2-μm filters. Three different, aerobic, gram-negative bacteria were isolated from a contaminated buffer solution and identified as Achromobacter xylosoxidans, A. denitrificans, and Acinetobacter lwoffii. A. xylosoxidans, a common bacterium that can cause nosocomial infections, showed a particularly high affinity for [3H]adenine in the low nanomolar range. Structure–activity relationships revealed that hypoxanthine also bound with high affinity to A. xylosoxidans, whereas other nucleobases (uracil, xanthine) and nucleosides (adenosine, uridine) did not. The nature of the labeled site in bacteria is not known, but preliminary results indicate that it may be a high-affinity purine transporter. We conclude that [3H]adenine is a well-suitable radioligand for adenine receptor binding studies but that bacterial contamination of the employed buffer solutions must be avoided

    Cloning, Expression, and Purification of Glyoxysomal 3-Oxoacyl-Coa Thiolase from Sunflower Cotyledons

    No full text
    The glyoxysomal β-oxidation system in sunflower (Helianthus annuus L.) cotyledons is distinguished by the coexistence of two different thiolase isoforms, thiolase I and II. So far, this phenomenon has only been described for glyoxysomes from sunflower cotyledons. Thiolase I (acetoacetyl-CoA thiolase, EC 2.3.1.9) recognizes acetoacetyl-CoA only, while thiolase II (3-oxoacyl-CoA thiolase, EC 2.3.1.16) exhibits a more broad substrate specificity towards 3-oxoacyl-CoA esters of different chain length. Here, we report on the cloning of thiolase II from sunflower cotyledons. The known DNA sequence of Cucumis sativus 3-oxoacyl-CoA thiolase was used to generate primers for cloning the corresponding thiolase from sunflower cotyledons. RT-PCR was then used to generate an internal fragment of the sunflower thiolase gene and the termini were isolated using 5′- and 3′-RACE. Full-length cDNA was generated using RT-PCR with sunflower thiolase-specific primers flanking the coding region. The resultant gene encodes a thiolase sharing at least 80% identity with other plant thiolases at the amino acid level. The recombinant sunflower thiolase II was expressed in a bacterial system in an active form and purified to apparent homogeneity in a single step using Ni-NTA agarose chromatography. The enzyme was purified 53.4-fold and had a specific activity of 235 nkat/mg protein. Pooled fractions from the Ni-NTA column resulted in an 83% yield of active enzyme to be used for further characterization

    Evidence for Protein–Protein Interaction between Dopamine Receptors and the G Protein-Coupled Receptor 143

    No full text
    Protein-protein interactions between G protein-coupled receptors (GPCRs) can augment their functionality and increase the repertoire of signaling pathways they regulate. New therapeutics designed to modulate such interactions may allow for targeting of a specific GPCR activity, thus reducing potential for side effects. Dopamine receptor (DR) heteromers are promising candidates for targeted therapy of neurological conditions such as Parkinson’s disease since current treatments can have severe side effects. To facilitate development of such therapies, it is necessary to identify the various DR binding partners. We report here a new interaction partner for DRD2 and DRD3, the orphan receptor G protein-coupled receptor 143 (GPR143), an atypical GPCR that plays multiple roles in pigment cells and is expressed in several regions of the brain. We previously demonstrated that the DRD2/ DRD3 antagonist pimozide also modulates GPR143 activity. Using confocal microscopy and two FRET methods, we observed that the DRs and GPR143 colocalize and interact at intracellular membranes. Furthermore, co-expression of wildtype GPR143 resulted in a 57% and 67% decrease in DRD2 and DRD3 activity, respectively, as determined by β-Arrestin recruitment assay. GPR143-DR dimerization may negatively modulate DR activity by changing affinity for dopamine or delaying delivery of the DRs to the plasma membrane

    Prediction and targeting of interaction interfaces in g-rotein coupled receptor oligomers

    Get PDF
    WOS: 000441070600006PubMed ID: 29866008Background: Communication within a protein complex is mediated by physical interactions made among the protomers. Evidence for both the allosteric regulation present among the protomers of the protein oligomer and of the direct effect of membrane composition on this regulation has made it essential to investigate the underlying molecular mechanism that drives oligomerization, the type of interactions present within the complex, and to determine the identity of the interaction interface. This knowledge allows a holistic understanding of dynamics and also modulation of the function of the resulting oligomers/signalling complexes. G-Protein-Coupled Receptors (GPCRs), which are targeted by 40% of currently prescribed drugs in the market, are widely involved in the formation of such physiological oligomers/signalling complexes. Scope: This review highlights the importance of studying Protein-Protein Interactions (PPI) by using a combination of data obtained from cutting-edge experimental and computational methods that were developed for this purpose. In particular, we focused on interaction interfaces found at GPCR oligomers as well as signalling complexes, since any problem associated with these interactions causes the onset of various crucial diseases. Conclusion: In order to have a holistic mechanistic understanding of allosteric PPIs that drive the formation of GPCR oligomers and also to determine the composition of interaction interfaces with respect to different membrane compositions, it is essential to combine both relevant experimental and computational data. In this way, efficient and specific targeting of these interaction interfaces in oligomers/complexes can be achieved. Thus, effective therapeutic molecules with fewer side effects can be designed to modulate the function of these physiologically important receptor family.FCT-Investigator programme (European Social Fund and Programa Operacional Potencial Humano) [IF/00578/2014]; FEDER (Programa Operacional Factores de Competitividade - COMPETE 2020); FCT-project [UID/NEU/04539/2013]; Marie Sklodowska-Curie Individual Fellowship MSCA-IF-2015 [MEMBRANEPROT 659826]This work had the financial support of FCT-Investigator programme - IF/00578/2014 (co-financed by European Social Fund and Programa Operacional Potencial Humano), a Marie Sklodowska-Curie Individual Fellowship MSCA-IF-2015 [MEMBRANEPROT 659826], the FEDER (Programa Operacional Factores de Competitividade - COMPETE 2020) and FCT-project: UID/NEU/04539/2013
    corecore