259 research outputs found

    Magnetic Field Distribution and Signal Decay in Functional MRI in Very High Fields (up to 9.4 T) Using Monte Carlo Diffusion Modeling

    Get PDF
    Extravascular signal decay rate R2 or R2∗ as a function of blood oxygenation, geometry, and field strength was calculated using a Monte Carlo (MC) algorithm for a wider parameter range than hitherto by others. The relaxation rates of gradient-recalled-echo (GRE) and Hahn-spin-echo (HSE) imaging in the presence of blood vessels (ranging from capillaries to veins) have been computed for a wide range of field strengths up to 9.4T and 50% blood deoxygenation. The maximum HSE decay was found to be shifted to lower radii in higher compared to lower field strengths. For GRE, however, the relaxation rate was greatest for large vessels at any field strength. In addition, assessments of computational reliability have been carried out by investigating the influence of the time step, the Monte Carlo step procedure, boundary conditions, the number of angles between the vessel and the exterior field B0, the influence of neighboring vessels having the same orientation as the central vessel, and the number of proton spins. The results were compared with those obtained from a field distribution of the vessel computed by an analytic formula describing the field distribution of an ideal object (an infinitely long cylinder). It was found that the time step is not critical for values equal to or lower than 200 microseconds. The choice of the MC step procedure (three-dimensional Gaussian diffusion, constant one- or three-dimensional diffusion step) also failed to influence the results significantly; in contrast, the free boundary conditions, as well as taking too few angles into account, did introduce errors. Next neighbor vessels with the same orientation as the main vessel did not contribute significantly to signal decay. The total number of particles simulated was also found to play a minor role in computing R2/ R2∗

    Cholesterol Synthesis Is Associated with Hepatic Lipid Content and Dependent on Fructose/Glucose Intake in Healthy Humans

    Get PDF
    Visceral obesity and fatty liver have been related to high synthesis and low absorption of cholesterol. This study aimed to investigate the associations of cholesterol metabolism with liver and visceral fat content in healthy humans. Another objective was to explore the effects of very-high-fructose and very-high-glucose diets on cholesterol homeostasis. We report on a cohort of 20 people (12 males, 8 females; age 30.5 ± 2.0 years; body mass index 25.9 ± 0.5 kg/m2) who completed a four-week dietary intervention study. Between the baseline and the followup examination the study participants in addition to a balanced weight-maintaining diet received 150 g of either fructose or glucose per day. Visceral and liver fat were measured with magnetic resonance (MR) imaging and 1H-MR spectroscopy, respectively. Cholesterol absorption and synthesis were estimated from the serum noncholesterol sterol concentrations. Performing cross-sectional analyses the lanosterol and desmosterol to cholesterol ratios were positively correlated with visceral and liver fat content (all P < .03). The lathosterol to cholesterol ratio decreased in response to high-fructose diet (P = .006) but not in response to high-glucose diet. To conclude, visceral and liver fat content are associated with cholesterol synthesis in healthy humans. Furthermore, cholesterol synthesis appears to be dependent on fructose/glucose intake

    No association between variation in the NR4A1 gene locus and metabolic traits in white subjects at increased risk for type 2 diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The nuclear receptor NR4A1 is implicated in metabolic regulation in insulin-sensitive tissues, such as liver, adipose tissue, and skeletal muscle. Functional loss of NR4A1 results in insulin resistance and enhanced intramuscular and hepatic lipid content. Therefore, we investigated in a cohort of white European subjects at increased risk for type 2 diabetes whether genetic variation within the <it>NR4A1 </it>gene locus contributes to prediabetic phenotypes, such as insulin resistance, ectopic fat distribution, or β-cell dysfunction.</p> <p>Methods</p> <p>We genotyped 1495 subjects (989 women, 506 men) for five single nucleotide polymorphisms (SNPs) tagging 100% of common variants (MAF = 0.05) within the <it>NR4A1 </it>gene locus with an r<sup>2 </sup>= 0.8. All subjects underwent an oral glucose tolerance test (OGTT), a subset additionally had a hyperinsulinemic-euglycemic clamp (n = 506). Ectopic hepatic (n = 296) and intramyocellular (n = 264) lipids were determined by magnetic resonance spectroscopy. Peak aerobic capacity, a surrogate parameter for oxidative capacity of skeletal muscle, was measured by an incremental exercise test on a motorized treadmill (n = 270).</p> <p>Results</p> <p>After appropriate adjustment and Bonferroni correction for multiple comparisons, none of the five SNPs was reliably associated with insulin sensitivity, ectopic fat distribution, peak aerobic capacity, or indices of insulin secretion (all p ≥ 0.05).</p> <p>Conclusions</p> <p>Our data suggest that common genetic variation within the <it>NR4A1 </it>gene locus may not play a major role in the development of prediabetic phenotypes in our white European population.</p

    Common Genetic Variation in the SERPINF1 Locus Determines Overall Adiposity, Obesity-Related Insulin Resistance, and Circulating Leptin Levels

    Get PDF
    OBJECTIVE: Pigment epithelium-derived factor (PEDF) belongs to the serpin family of peptidase inhibitors (serpin F1) and is among the most abundant glycoproteins secreted by adipocytes. In vitro and mouse in vivo data revealed PEDF as a candidate mediator of obesity-induced insulin resistance. Therefore, we assessed whether common genetic variation within the SERPINF1 locus contributes to adipose tissue-related prediabetic phenotypes in humans. SUBJECTS/METHODS: A population of 1,974 White European individuals at increased risk for type 2 diabetes was characterized by an oral glucose tolerance test with glucose and insulin measurements (1,409 leptin measurements) and genotyped for five tagging SNPs covering 100% of common genetic variation (minor allele frequency ≥ 0.05) in the SERPINF1 locus. In addition, a subgroup of 486 subjects underwent a hyperinsulinaemic-euglycaemic clamp and a subgroup of 340 magnetic resonance imaging (MRI) and spectroscopy (MRS). RESULTS: After adjustment for gender and age and Bonferroni correction for the number of SNPs tested, SNP rs12603825 revealed significant association with MRI-derived total adipose tissue mass (p = 0.0094) and fasting leptin concentrations (p = 0.0035) as well as nominal associations with bioelectrical impedance-derived percentage of body fat (p = 0.0182) and clamp-derived insulin sensitivity (p = 0.0251). The association with insulin sensitivity was completely abolished by additional adjustment for body fat (p = 0.8). Moreover, the fat mass-increasing allele of SNP rs12603825 was significantly associated with elevated fasting PEDF concentrations (p = 0.0436), and the PEDF levels were robustly and positively associated with all body fat parameters measured and with fasting leptin concentrations (p<0.0001, all). CONCLUSION: In humans at increased risk for type 2 diabetes, a functional common genetic variant in the gene locus encoding PEDF contributes to overall body adiposity, obesity-related insulin resistance, and circulating leptin levels

    Proton magnetic resonance spectroscopy in skeletal muscle: Experts' consensus recommendations

    Get PDF
    H-1-MR spectroscopy of skeletal muscle provides insight into metabolism that is not available noninvasively by other methods. The recommendations given in this article are intended to guide those who have basic experience in general MRS to the special application of H-1-MRS in skeletal muscle. The highly organized structure of skeletal muscle leads to effects that change spectral features far beyond simple peak heights, depending on the type and orientation of the muscle. Specific recommendations are given for the acquisition of three particular metabolites (intramyocellular lipids, carnosine and acetylcarnitine) and for preconditioning of experiments and instructions to study volunteers.Peer reviewe

    Nonsuppressed Glucagon After Glucose Challenge as a Potential Predictor for Glucose Tolerance

    Get PDF
    Glucagon levels are classically suppressed after glucose challenge. It is still not clear as to whether a lack of suppression contributes to hyperglycemia and thus to the development of diabetes. We investigated the association of postchallenge change in glucagon during oral glucose tolerance tests (OGTTs), hypothesizing that higher postchallenge glucagon levels are observed in subjects with impaired glucose tolerance (IGT). Glucagon levels were measured during OGTT in a total of 4,194 individuals without diabetes in three large European cohorts. Longitudinal changes in glucagon suppression were investigated in 50 participants undergoing a lifestyle intervention. Only 66-79% of participants showed suppression of glucagon at 120 min (fold change glucagon(120/0)Peer reviewe
    corecore