12 research outputs found

    Recent Progress in the Development of β-Ga2O3 Scintillator Crystals Grown by the Czochralski Method

    Get PDF
    A high-quality bulk single crystal of β-Ga2O3 has been grown by the Czochralski method and its basic scintillation characteristics (light yield, energy resolution, proportionality, and scintillation decay times) have been investigated. All the samples cut from the crystal show promising scintillation yields between 8400 and 8920 ph/MeV, which is a noticeable step forward compared to previous studies. The remaining parameters, i.e. the energy resolution slightly above 10% (at 662 keV) and the scintillation mean decay time just under 1 μs, are at the same level as we have formerly recognized for β-Ga2O3. The proportionality of yield seems not to deviate from standards determined by other commercial scintillators

    Tailoring the Scintillation Properties of β-Ga2O3 by Doping with Ce and Codoping with Si

    Get PDF
    Measurements of pulse height spectra and scintillation time profiles performed on Czochralski-grown β-Ga2O3, β-Ga2O3:Ce, and β-Ga2O3:Ce,Si crystals are reported. The highest value of scintillation yield, 7040 ph/MeV, was achieved for pure β-Ga2O3 at a low free electron concentration, nevertheless Ce-doped crystals could also approach high values thereof. Si-codoping, however, decreases the scintillation yield. The presence of Ce, and the more of Ce and Si, in β-Ga2O3 significantly increases the contribution of the fastest components in scintillation time profiles, which makes β-Ga2O3 a very fast scintillator under γ-excitation

    Transmission electron microscopic investigation of the growth of group III sesquioxides Ga2O3

    Get PDF
    In dieser Arbeit werden die grundlegenden Wachstumsprozesse von Ga2O3 , mittels Transmissionselektronenmikroskopie analysiert. Dazu gehört die Untersuchung des heteroepitaktischen Wachstums von Galliumoxidschichten welche mittels Molekularstrahlepitaxie (molekular beam epitaxy MBE), der gepulsten Laser Abscheidung (pulsed laser deposition (PLD)) und der metallorganischen Gasphasenepitaxie (metalorganic vapor phase epitaxy (MOVPE)) auf (0001) orientierte Saphir Substraten abgeschieden wurden. Heteroepitaktisches Wachstum von Ga2O3 auf Saphir (0001) erfolgt bis zu einer Dicke von 3 Monolagen pseudomorph als α-Ga2O3 welches durch die Gitterfehlpassung zwischen Galliumoxid und dem Saphire Substrat induzierte Gitterverspannung stabilisiert wir. Weiterhin, im Fokus der Arbeit stehend, wird das homoepitaktische Wachstum von Galliumoxid auf (100) orientierten Galliumoxidsubstraten untersucht. Neben den Besonderheiten des Schichtwachstums, die sich aus den eingesetzten metallorganischen Präkursoren und Sauerstoffquellen ergeben, wird die Schichtstruktur in Abhängigkeit der typischen Wachstumsparameter (Wachstumstemperatur, Wachstumsrate, Kammerdruck und Fehlorientierung des Substrates) analysiert. Dabei wird gezeigt das homoepitaktischen Wachstum auf (100) orientiertem, β-Ga2O3, mittels MOVPE, die kristalline Perfektion der gewachsenen Schichten stark von den verwendeten Präkursoren (Trimethylgallium (TMGa) und Triethylgallium (TEGa) als metallorganische Ausgangsstoffe und H2 O oder purer Sauerstoff als Oxidant) und den chemischen Prozessen an der Oberfläche bestimmt wird. Des Weiteren wird die Entstehung von Zwillingslammelen in abhähngigkeit der Fehlorientierung untersucht. Durch die Einführung von vorbestimmten Fehlorientierungswinkeln der Substrate ist es möglich das Entstehen der Zwillingslamellen zu verhindern, und ein Stufenflusswachstum zu generieren. Durch die Anwendung eines Ratengleichungsansatzes ist es möglich die experimentell beobachteten Dichten an Zwillingslamellen zu erklären und einen Diffusionskoeffizienten zu bestimmen. (i) Heteroepitaktisches Wachstum von Ga2O3 auf Saphir (0001) erfolgt bis zu einer Dicke von 3 Monolagen pseudomorph als alpha-Ga2O3. Oberhalb dieser Schicht wächst relaxiertes ß-Ga2O3 in Form von 3 Rotationsdomänen auf. Die Stabilisation der dünnen alpha-Ga2O3 Schicht wird, durch die Gitterfehlpassung zwischen Galliumoxid und dem Saphire Substrat induzierte Gitterverspannung bewirkt. (ii) Beim homoepitaktischen Wachstum auf (100) orientiertem ß-Ga2O3 mittels MOVPE wird die kristalline Perfektion der gewachsenen Schichten stark von den verwendeten Präkursoren (Trimethylgallium (TMGa) und Triethylgallium (TEGa) als metallorganische Ausgangsstoffe und H2O oder purer Sauerstoff als Oxidant) und den chemischen Prozessen an der Oberfläche bestimmt. Während beim Wachstum mittels TMGa und O2 vorwiegend polykristalline Schichten entstehen, ergeben sich beim Wachstum mittels TMGa und H2O sowie TEGa und O2 geschlossenen epitaktische Schichten. Dieser signifikante Unterschiede lässt sich durch die unterschiedlichen Reaktionswege der Ausgangsstoffe sowie durch die katalytische Wirkung der (100) Flächen des ß-Ga2O3 erklären. (iii) Die Perfektion, mittels MOVPE gewachsener, homoepitaktischer Schichten, auf (100) orientierten Substraten, ist stark von der Fehlorientierung des Substrates bestimmt. Schichten die auf Substraten mit geringen Fehlorientierungen abgeschieden werden (< 2° bei Wachstumstemperaturen < 850°C) sind durch eine hohe Dichte an Zwillingslamellen gekennzeichnet. Die Entstehung der Zwillingslamellen ist ein Resultat eines Doppelpositionierungsprozesses der Atome auf der Oberfläche der Wachstumsebene. Durch die Einführung von vorbestimmten Fehlorientierungswinkeln der Substrate ist es möglich das Entstehen der Zwillingslamellen zu verhindern, und ein Stufenflusswachstum zu generieren. Durch die Anwendung eines Ratengleichungsansatzes, welcher die konkurrierenden Prozesse des Einbaus von Atomen in Oberflächenstufen sowie der Nukleation und des Wachstum von zweidimensionalen Inseln beschreibt, ist es möglich die experimentell beobachteten Dichten an Zwillingslamellen zu erklären und einen Diffusionskoeffizienten zu bestimmen, Dieser ist um zwei Größenordnungen geringer als bei klassischen Halbleitern, wie z. B. GaAs. In dieser Arbeit werden die grundlegenden Wachstumsprozesse von Ga2O3 , mittels Transmissionselektronenmikroskopie analysiert. Dazu gehört die Untersuchung des heteroepitaktischen Wachstums von Galliumoxidschichten welche mittels Molekularstrahlepitaxie (molekular beam epitaxy MBE), der gepulsten Laser Abscheidung (pulsed laser deposition (PLD)) und der metallorganischen Gasphasenepitaxie (metalorganic vapor phase epitaxy (MOVPE)) auf (0001) orientierte Saphir Substraten abgeschieden wurden. Heteroepitaktisches Wachstum von Ga2O3 auf Saphir (0001) erfolgt bis zu einer Dicke von 3 Monolagen pseudomorph als α-Ga2O3 welches durch die Gitterfehlpassung zwischen Galliumoxid und dem Saphire Substrat induzierte Gitterverspannung stabilisiert wir. Weiterhin, im Fokus der Arbeit stehend, wird das homoepitaktische Wachstum von Galliumoxid auf (100) orientierten Galliumoxidsubstraten untersucht. Neben den Besonderheiten des Schichtwachstums, die sich aus den eingesetzten metallorganischen Präkursoren und Sauerstoffquellen ergeben, wird die Schichtstruktur in Abhängigkeit der typischen Wachstumsparameter (Wachstumstemperatur, Wachstumsrate, Kammerdruck und Fehlorientierung des Substrates) analysiert. Dabei wird gezeigt das homoepitaktischen Wachstum auf (100) orientiertem, β-Ga2O3, mittels MOVPE, die kristalline Perfektion der gewachsenen Schichten stark von den verwendeten Präkursoren (Trimethylgallium (TMGa) und Triethylgallium (TEGa) als metallorganische Ausgangsstoffe und H2 O oder purer Sauerstoff als Oxidant) und den chemischen Prozessen an der Oberfläche bestimmt wird. Des Weiteren wird die Entstehung von Zwillingslammelen in abhähngigkeit der Fehlorientierung untersucht. Durch die Einführung von vorbestimmten Fehlorientierungswinkeln der Substrate ist es möglich das Entstehen der Zwillingslamellen zu verhindern, und ein Stufenflusswachstum zu generieren. Durch die Anwendung eines Ratengleichungsansatzes ist es möglich die experimentell beobachteten Dichten an Zwillingslamellen zu erklären und einen Diffusionskoeffizienten zu bestimmen. Des Weiteren wird das Wachstum im Mischsystem (InxGa1-x)2O3 untersucht und gezeigt das Indium als grenzflächenaktive Substanz wirken kann.In this work we study the basic growth processes of epitaxial Ga2O3 films, by means of transmission electron microscopy. We investigate the heteroepitaxial growth of thin layers Ga2O3 on the (0001) plane of sapphire grown by molecular beam epitaxy (MBE), pulsed laser deposition (PLD) and metal organic vapor phase epitaxy (MOVPE). Furthermore, we will focus on the homoepitaxial growth on the (100) plane by MOVPE. Beside the peculiarities of the layer growth dependence on different metal organic precursors and oxygen sources, we investigate the influence of typical growth parameters (i.e. growth temperature, growth-rate, chamber pressure and miscut angle of the substrate) on the layer morphology. Incase of heteroepitaxial growth of β-Ga2O3 on (0001) plane of sapphire, independent of the growth method, the formation of a 3 monolayer thick α-Ga2O3 layer is observed, which is stabilized through strain, as a result of the lattice mismatch between sapphire and α-Ga2O3. In case of homoepitaxial growth by MOVPE on (100) oriented β-Ga2O3, the crystalline quality of the grown layer strongly depends on the used precursor (tri-methyl-gallium (TMGa) or tri-ethyl-gallium (TEGa) as metal precursor and H2O or pure oxygen as oxidant) and the chemical processes on the surface, respectively. Further on is the crystalline perfection of homoepitaxial layers grown by MOVPE on (100) oriented β-Ga2O3 substrates strongly dependent on the miscut-angle of the substrates. Layer grown on substrate with a small miscut-angle (< 2°) show high amount of twin lamella. These twin lamella are a result of a possible double positioning mechanism of ad-atoms on the growth surface. By introducing appropriate miscut-angles of the substrate it is possible to suppress the formation of these twin lamellae, and enable step flow growth. By applying a rate equation approach, describing the competing processes of incorporation of ad-atoms at kink sites or nucleation and growth of two dimensional island, it is possible to quantitatively reproduce the experimentally observed twin lamella densities and to determine a surface diffusion coefficient of the ad-atoms. Furthermore, in case of the alloy system (InxGa1-x)2O3, it is shown that indium can act as an surfactant, by increasing the surface diffusion

    Kinetic Monte Carlo model for homoepitaxial growth of Ga_{2}O_{3}

    No full text
    We developed a kinetic Monte Carlo (KMC) model for the homoepitaxy of β-Ga_{2}O_{3}. It comprises adsorption, diffusion, and desorption and reflects the structure of β-Ga_{2}O_{3} with its two kinds of atoms: Ga and O. The knowledge gained from metal organic vapour phase experiments (MOVPE) experiments combined with AFM and TEM characterisation was used for the setup of rules and activation energies for the various surface processes. We performed a set of runs for the growth on flat and vicinal (100) surfaces. The nucleation on the flat surface requires a minimum ratio of the impingement rate of O_{2} and Ga. The behavior at different substrate temperatures was similar in experiment and in simulation. At high temperatures, we observe the formation of large islands whereas at low temperatures small islands are formed. The growth rate is increasing with decreasing temperature. On a vicinal surface (6^{∘}) different growth modes have been observed when using different desorption energies. Low desorption energy (high desorption rate) leads to step bunching, intermediate to step growth, and high energy (low desorption rate) to nucleation on terraces with a final configuration similar to step bunching

    Ultra-wide bandgap, conductive, high mobility, and high quality melt-grown bulk ZnGa2O4 single crystals

    Get PDF
    Truly bulk ZnGa2O4 single crystals were obtained directly from the melt. High melting point of 1900 ± 20 °C and highly incongruent evaporation of the Zn- and Ga-containing species impose restrictions on growth conditions. The obtained crystals are characterized by a stoichiometric or near-stoichiometric composition with a normal spinel structure at room temperature and by a narrow full width at half maximum of the rocking curve of the 400 peak of (100)-oriented samples of 23 arcsec. ZnGa2O4 is a single crystalline spinel phase with the Ga/Zn atomic ratio up to about 2.17. Melt-grown ZnGa2O4 single crystals are thermally stable up to 1100 and 700 °C when subjected to annealing for 10 h in oxidizing and reducing atmospheres, respectively. The obtained ZnGa2O4 single crystals were either electrical insulators or n-type semiconductors/degenerate semiconductors depending on growth conditions and starting material composition. The as-grown semiconducting crystals had the resistivity, free electron concentration, and maximum Hall mobility of 0.002–0.1 Ωcm, 3 × 1018–9 × 1019 cm−3, and 107 cm2 V−1 s−1, respectively. The semiconducting crystals could be switched into the electrically insulating state by annealing in the presence of oxygen at temperatures ≥700 °C for at least several hours. The optical absorption edge is steep and originates at 275 nm, followed by full transparency in the visible and near infrared spectral regions. The optical bandgap gathered from the absorption coefficient is direct with a value of about 4.6 eV, close to that of β-Ga2O3. Additionally, with a lattice constant of a = 8.3336 Å, ZnGa2O4 may serve as a good lattice-matched substrate for magnetic Fe-based spinel films
    corecore