1,855 research outputs found

    Reliability growth during a development testing program

    Get PDF
    Binomial and trinomial mathematical models for reliability growth studies - statistical analysis of system failure

    Composition and distribution of aerosols over the North Atlantic during the Subsonic Assessment Ozone and Nitrogen Oxide Experiment (SONEX)

    Get PDF
    We report the mixing ratios of aerosol-associated soluble ions (focusing on SO4= and NO3−) and HNO3 over the North Atlantic during NASA\u27s Subsonic Assessment Ozone and Nitrogen Oxide Experiment (SONEX). The SONEX campaign was designed to quantify the impacts of jet emissions in the North Atlantic Flight Corridor (NAFC) by sampling both directly within and far removed from the organized track system. Beryllium-7 activities were also measured to assess the magnitude of stratospheric influence in the SONEX study region. Mixing ratios of aerosol-associated SO4= and NO3− above 8 km during SONEX were lower than recent measurements over the central United States during the Subsonic Aircraft Contrail and Cloud Effects Special Study (SUCCESS) and the same as those over the remote South Pacific during the Pacific Exploratory Mission-Tropics (PEM-Tropics), suggesting that aircraft emissions cannot yet be a major source of these ions. Furthermore, mean SO4= mixing ratios at high altitudes were 65% higher in regions away from the NAFC than they were directly in the track system just a few hours after peak traffic. Nitric acid mixing ratios at the highest DC-8 sampling altitudes were elevated during SONEX compared to PEM-Tropics, but there was no clear signal of enhancement by jet exhaust. Strong correlations with 7Be indicate that a large fraction of HNO3and aerosol-associated SO4= measured at high altitudes during SONEX were derived from a stratospheric source

    In situ evidence for renitrification in the Arctic lower stratosphere during the polar aura validation experiment (PAVE)

    Get PDF
    In-situ measurements of nitric acid (HNO3), ozone (O3), and nitrous oxide (N2O) were made from the NASA DC-8 during the Polar Aura Validation Experiment in January/February 2005. In the lower stratosphere (9–12.5 km, potential temperature 300–350 K) characteristic compact relationships were observed between all three gases. The ratio HNO3/O3 averaged 3.5 (±0.7) ppt/ppb. Samples with enhanced HNO3/O3 (\u3e4.0) were most abundant under the edge of the Arctic Polar vortex in airmasses with enhanced mixing ratios of both gases (\u3e400 ppb O3 and \u3e2000 ppt HNO3) and reduced mixing ratios of N2O (\u3c305 ppb), indicating air from higher levels in the stratosphere. Relationships to N2O in the anomalous samples under the vortex edge indicate that increases in HNO3/O3 reflect renitrification at DC-8 flight levels, with no indication of significant O3 loss. Renitrified air was only observed at potential temperatures above 340 K, and was most abundant on the PAVE flights on 27 and 29 January

    K-5 Elementary Alternative Program: A Case Study

    Get PDF
    The purpose of this case study was to examine how the K-5 elementary alternative program All Students Can Thrive (ASCT) used student-centered learning practices to influence the whole child. There is a lack of research on K-5 elementary alternative programs, such as ASCT, and specifically those that integrate student-centered learning practices to influence the whole child. Literature does not contain universally accepted interventions that are effective in the elementary alternative setting to help students return to the mainstream classroom setting better prepared to display appropriate behaviors when a student is removed from a mainstream classroom setting due to disruptive behaviors. The Association for Supervision and Curriculum Development (ASCD) has determined five major tenets that measure how educators influence the whole child and those are: healthy, safe, engaged, supported, and challenged (ASCD, 2022). These five tenets will serve as the theoretical framework for this research on the whole child and ASCD will function as the scientific authority on the whole child for the purposes this case study. Data collection strategies included interviews, field notes, and a document review. Analysis of data occurred in three phases: (a) coding themes from participant responses during interviews (b) analysis of interview field notes (c) document review. The analysis of the case study data was based on the theoretical proposition that educating the whole child involves children being healthy, safe, engaged, supported, and challenged (ASCD, 2022). The credibility of the analysis was protected by triangulation of data through the coding of interviews, interview field notes, and a document review. The results revealed that that all five tenets of the whole child were identified as a common theme or sub-theme from participant responses. Five common themes: (1) Engaged (2) Space to Thrive/Choices (3) Identify Needs/Skills (4) Confidence/Hope (5) Relationship and five sub-themes emerged from the analysis of data: (1) Challenged (2) Supported (3) Safe (4) Healthy (5) Communication

    Radiative Efficiencies of Continuously Powered Blast Waves

    Full text link
    We use general arguments to show that a continuously powered radiative blast wave can behave self similarly if the energy injection and radiation mechanisms are self similar. In that case, the power-law indices of the blast wave evolution are set by only one of the two constituent physical mechanisms. If the luminosity of the energy source drops fast enough, the radiation mechanisms set the power-law indices, otherwise, they are set by the behavior of the energy source itself. We obtain self similar solutions for the Newtonian and the ultra-relativistic limits. Both limits behave self similarly if we assume that the central source supplies energy in the form of a hot wind, and that the radiative mechanism is the semi-radiative mechanism of Cohen, Piran & Sari (1998). We calculate the instantaneous radiative efficiencies for both limits and find that a relativistic blast wave has a higher efficiency than a Newtonian one. The instantaneous radiative efficiency depends strongly on the hydrodynamics and cannot be approximated by an estimate of local microscopic radiative efficiencies, since a fraction of the injected energy is deposited in shocked matter. These solutions can be used to calculate Gamma Ray Bursts afterglows, for cases in which the energy is not supplied instantaneously.Comment: 28 LaTeX pages, including 9 figures and 3 table

    Evidence of nitric acid uptake in warm cirrus anvil clouds during the NASA TC4 campaign

    Get PDF
    Uptake of HNO3 onto cirrus ice may play an important role in tropospheric NOx cycling. Discrepancies between modeled and in situ measurements of gas-phase HNO3 in the troposphere suggest that redistribution and removal mechanisms by cirrus ice have been poorly constrained. Limited in situ measurements have provided somewhat differing results and are not fully compatible with theory developed from laboratory studies. We present new airborne measurements of HNO3 in cirrus clouds from anvil outflow made during the Tropical Composition, Cloud, and Climate Coupling Experiment (TC4). Upper tropospheric (\u3e9 km) measurements made during three flights while repeatedly traversing the same cloud region revealed depletions of gas-phase HNO3 in regions characterized by higher ice water content and surface area. We hypothesize that adsorption of HNO3 onto cirrus ice surfaces could explain this. Using measurements of cirrus ice surface area density and some assumptions about background mixing ratios of gas-phase HNO3, we estimate molecular coverages of HNO 3 on cirrus ice surface in the tropical upper troposphere during the TC4 racetracks to be about 1 × 1013 molecules cm-2. This likely reflects an upper limit because potential dilution by recently convected, scavenged air is ignored. Also presented is an observation of considerably enhanced gas-phase HNO3 at the base of a cirrus anvil suggesting vertical redistribution of HNO3 by sedimenting cirrus particles and subsequent particle sublimation and HNO3 evaporation. The impact of released HNO3, however, appears to be restricted to a very thin layer just below the cloud. Copyright 2010 by the American Geophysical Union

    Seasonal distributions of fine aerosol sulfate in the North American Arctic basin during TOPSE

    Get PDF
    We used the mist chamber/ion chromatography technique to quantify fine aerosol SO4=(\u3c2.7 μm) in the Arctic during the Tropospheric Ozone Production about the Spring Equinox Experiment (TOPSE) with about 2.5 min time resolution. Our effective sample area ranged from 50° to 86°N and 53° to 100°W. The seasonal evolution of fine aerosol sulfate in the Arctic troposphere during TOPSE was consistent with the phenomenon of Arctic haze. Arctic haze has been attributed to pollution from sources in the Arctic and pollution transported meridionally along stable isentropes into the Arctic in geographically broad but vertically narrow bands. These layers became more prevalent at higher altitudes as the season progressed toward summer, and the relevant isentropes are not held so close to the surface. Mean fine particle SO4= mixing ratios during TOPSE in February below 1000 m were elevated (112 pptv) and highly variable (between 28 and 290 pptv) but were significantly lower at higher altitudes (about 40 pptv). As the season progressed, elevated mixing ratios and higher variability were observed at higher altitudes, up to 7 km. In May, mixing ratios at the lowest altitudes declined but still remained higher than in February at all altitudes. The high variability in our measurements likely reflects the vertical heterogeneity of the wintertime Arctic atmosphere as the airborne sampling platform passed in and out of these layers. It is presumed that mixing ratios and variability will continue to decline at all altitudes into the summer as wet deposition processes become important in removing aerosol SO4= from the troposphere

    Ship-based nitric acid measurements in the Gulf of Maine during New England Air Quality Study 2002

    Get PDF
    Gas phase nitric acid (HNO3) was measured at 5-min resolution on board the National Oceanographic and Atmospheric Administration (NOAA) research vessel Ronald H. Brown during the second leg (29 July to 10 August) of the New England Air Quality Study (NEAQS) 2002 cruise. A primary objective of the cruise was to improve understanding of the oxidation of NOx in, and removal of the oxidation products from, the polluted marine boundary layer east of northeastern North America. For the first 9 days of this leg the ship remained north of Cape Cod, and the cruise track did not extend much farther north than the New Hampshire-Maine border. During this period, HNO3 averaged 1.1 ppb and accounted for 19% of total reactive nitrogen oxides (measured NOy). On all days, peak HNO3 mixing ratios were observed in the early afternoon (average 2.3 ppb), at levels twofold to fourfold higher than the minima around sunrise and sunset. In these daytime peaks, HNO3/NOy averaged 28%. There were secondary nighttime peaks of HNO3 (0.9 ppb average), when HNO3 accounted for 16% of total reactive nitrogen oxides. This pronounced diurnal pattern confirms that production, and subsequent deposition, of HNO3 in the polluted marine boundary layer downwind of New England removes a significant fraction of the NOx exported to the atmosphere over the Gulf of Maine. Nitric acid was correlated with O3, particularly during the early afternoon interval when both molecules reached maximum mixing ratios (R2 = 0.66). The ozone production efficiency (OPE) inferred from the slope (10 ppb O3/ppb HNO3) was similar to the OPE of 9 estimated at the Atmospheric Investigation, Regional Modeling, Analysis and Prediction (AIRMAP) Thompson Farm station in coastal New Hampshire during the study period

    Aerosol chemical composition in Asian continental outflow during the TRACE-P campaign: Comparison with PEM-West B

    Get PDF
    Aerosol associated soluble ions and the radionuclide tracers 7Be and 210Pb were quantified in 414 filter samples collected in spring 2001 from the DC-8 during the Transport and Chemical Evolution over the Pacific (TRACE-P) campaign. Binning the data into near Asia (flights from Hong Kong and Japan) and remote Pacific (all other flights) revealed large enhancements of NO3−, SO4=, C2O4=, NH4+, K+, Mg2+, and Ca2+ near Asia. The boundary layer and lower troposphere were most strongly influenced by continental outflow, and the largest enhancements were seen in Ca2+ (a dust tracer) and NO3− (reflecting uptake of HNO3 onto the dust). Comparing the TRACE P near Asia bin with earlier results from the same region during PEM-West B (in 1994) shows at least twofold enhancements during TRACE P in most of the ions listed above. Calcium and NO3− were most enhanced in this comparison as well (more than sevenfold higher in the boundary layer and threefold higher in the lower troposphere). Independent estimation of Asian emissions of gaseous precursors of the aerosol-associated ions suggest only small changes between the two missions, and precipitation fields do not suggest any significant difference in the efficiency of the primary sink, precipitation scavenging. It thus appears that with the possible exception of dust, the enhancements of aerosol-associated species during TRACE P cannot be explained by stronger sources or weaker sinks. We argue that the enhancements largely reflect the fact that TRACE P focused on characterizing Asian outflow, and thus the DC-8 was more frequently flown into regions that were influenced by well-organized flow off the continent

    Stratospheric influence on the northern North American free troposphere during TOPSE: 7Be as a stratospheric tracer

    Get PDF
    We use 7Be, with HNO3 and O3, to identify air masses sampled from the NCAR C-130 during TOPSE that retained clear evidence of stratospheric influence. A total of 43 such air masses, spread fairly evenly across the February to May sampling period, and 40°N–86°N latitude range, were encountered. South of 55°N, nearly all clear stratospheric influence was restricted to altitudes above 6 km. At higher latitudes stratospherically influenced air masses were encountered as low as 2 km. Approximately 12% of all TOPSE sampling time at altitudes above 2 km was spent in stratospherically impacted air, above 6 km this increased to more than half of the time. Because it is not certain how much of this stratospherically influenced air irreversibly injected mass (and chemical compounds) into the troposphere, we estimate the stratospheric fraction of O3 in high latitude TOPSE samples based on a linear relationship to7Be and compare it to in situ O3. This analysis indicates that the stratospheric source can account for a dominant fraction (\u3e85%) of in situ O3 throughout TOPSE, but that the stratospheric contribution was nearly constant through the 4 month campaign. In February and March the 7Be based estimates of stratospheric O3 account for 10–15% more O3 than was measured, but by April and May there is up to about 10% more O3 than expected from the stratospheric source. This trend suggests that a seasonal transition from O3 depletion to photochemical production in the high latitude North American troposphere is the major cause of the springtime increase in O3
    • …
    corecore