97 research outputs found

    The Role of G Protein-Coupled Receptors in the Right Ventricle in Pulmonary Hypertension

    Get PDF
    Pressure overload of the right ventricle (RV) in pulmonary arterial hypertension (PAH) leads to RV remodeling and failure, an important determinant of outcome in patients with PAH. Several G protein-coupled receptors (GPCRs) are differentially regulated in the RV myocardium, contributing to the pathogenesis of RV adverse remodeling and dysfunction. Many pharmacological agents that target GPCRs have been demonstrated to result in beneficial effects on left ventricular (LV) failure, such as beta-adrenergic receptor and angiotensin receptor antagonists. However, the role of such drugs on RV remodeling and performance is not known at this time. Moreover, many of these same receptors are also expressed in the pulmonary vasculature, which could result in complex effects in PAH. This manuscript reviews the role of GPCRs in the RV remodeling and dysfunction and discusses activating and blocking GPCR signaling to potentially attenuate remodeling while promoting improvements of RV function in PAH

    Enhanced inflammatory cell profiles in schistosomiasis-induced pulmonary vascular remodeling.

    Get PDF
    Schistosomiasis (bilharzia) is a neglected parasitic disease caused by trematode flatworms of the genus Schistosoma which affects over 240 million people worldwide. It is characterized by the formation of inflammatory granulomas around deposited parasite eggs. Recent studies have revealed that immune and inflammatory responses play a crucial role in pathogenesis of schistosomiasis. The aim of this paper is to systematically evaluate the number and distribution of inflammatory cells in S. mansoni-infected mice at different doses and time points. Immunohistochemistry was performed on lung and liver tissue sections from Schistosoma-infected mice and uninfected healthy controls. Positively stained cells in whole-lung/liver tissue sections, surrounding the eggs, and in the different compartments of the tissues, were counted. We found a significant increase in the number of mast cells (toluidine blue(+)), CD3(+) cells, CD14(+) cells, CD68(+) cells, and CD15(+) cells in Schistosoma-infected tissues compared with untreated healthy controls (P???0.05 for all). Our findings revealed altered and enhanced immune cell infiltration in schistosomiasis. We suggest that these cells may contribute to the pathophysiology of Schistosoma resulting in pulmonary vascular remodeling

    The Role of Transient Receptor Potential Channel 6 Channels in the Pulmonary vasculature

    Get PDF
    Canonical or classical transient receptor potential channel 6 (TRPC6) is a Ca2+-permeable non-selective cation channel that is widely expressed in the heart, lung, and vascular tissues. The use of TRPC6-deficient ("knockout") mice has provided important insights into the role of TRPC6 in normal physiology and disease states of the pulmonary vasculature. Evidence indicates that TRPC6 is a key regulator of acute hypoxic pulmonary vasoconstriction. Moreover, several studies implicated TRPC6 in the pathogenesis of pulmonary hypertension. Furthermore, a unique genetic variation in the TRPC6 gene promoter has been identified, which might link the inflammatory response to the upregulation of TRPC6 expression and ultimate development of pulmonary vascular abnormalities in idiopathic pulmonary arterial hypertension. Additionally, TRPC6 is critically involved in the regulation of pulmonary vascular permeability and lung edema formation during endotoxin or ischemia/reperfusion-induced acute lung injury. In this review, we will summarize latest findings on the role of TRPC6 in the pulmonary vasculature

    Inhibition of Overactive Transforming Growth Factor–β Signaling by Prostacyclin Analogs in Pulmonary Arterial Hypertension

    Get PDF
    YesHeterozygous loss of function mutations in the type II bone morphogenetic protein receptor (BMPR-II), a member of the transforming growth factor (TGF-β) receptor family, underlie the majority of familial cases of pulmonary arterial hypertension (PAH). The TGF-β1 pathway is activated in PAH and inhibitors of TGF-β1 signaling prevent the development and progression of PAH in experimental models. However, the effect of currently utilized therapies on the TGF-β pathway is not known. Prostacyclin analogues remain the first line of treatment for clinical PAH. We hypothesized that these agents effectively decrease the activity of the TGF-β1 pathway. Beraprost sodium (BPS), a prostacyclin analogue selectively inhibits proliferation in a dose-dependent manner in mouse primary pulmonary arterial smooth muscle cells (PASMCs) harbouring a pathogenic BMPR2 nonsense mutation in both the presence and absence of TGF-β1 stimulation. This study demonstrates that this agent inhibits TGF-β1–induced SMAD-dependent and -independent signaling via a PKA dependent pathway by reducing the phosphorylation of SMADs 2 and 3 and p38MAPK proteins. Finally, in a monocrotaline (MCT)-induced rat model of PAH, which is associated with increased TGF-β signaling, this study confirms that treprostinil (TPS), a stable prostacyclin analogue, inhibits the TGF-β pathway by reducing SMAD3 phosphorylation. Taken together, these data suggest that prostacyclin analogues inhibit dysregulated TGF-β signaling in vitro and in vivo and reduce BMPR-II-mediated proliferation defects in mutant mice PASMCs.The authors acknowledge financial support from the British Heart Foundation, United Kingdom (Programme Grant 1-2004-357 to R.C.T. and N.W.M.), a Heptagon Life Science Proof of Concept Fund (grants KCL24 and KCL25 to M.T.N. and R.C.T., respectively), and the Great Britain Sasakawa Foundation (grant B70 to M.T.N.

    Altered fibrin clot structure and dysregulated fibrinolysis contribute to thrombosis risk in severe COVID-19

    Full text link
    The high incidence of thrombotic events suggests a possible role of the contact system pathway in COVID-19 pathology. Here, we demonstrate altered levels of factor XII (FXII) and its activation products in critically ill COVID-19 patients in comparison to patients with severe acute respiratory distress syndrome due to influenza virus (ARDS-influenza). Compatible with this data, we report rapid consumption of FXII in COVID-19, but not in ARDS-influenza, plasma. Interestingly, the lag phase in fibrin formation, triggered by the FXII activator kaolin, was not prolonged in COVID-19 as opposed to ARDS-influenza. Using confocal and electron microscopy, we showed that increased FXII activation rate, in conjunction with elevated fibrinogen levels, triggers formation of fibrinolysis-resistant, compact clots with thin fibers and small pores in COVID-19. Accordingly, clot lysis was markedly impaired in COVID-19 as opposed to ARDS-infleunza subjects. Dysregulatated fibrinolytic system, as evidenced by elevated levels of thrombin-activatable fibrinolysis inhibitor, tissue-plasminogen activator, and plasminogen activator inhibitor-1 in COVID-19 potentiated this effect. Analysis of lung tissue sections revealed wide-spread extra- and intra-vascular compact fibrin deposits in COVID-19 patients. Together, compact fibrin network structure and dysregulated fibrinolysis may collectively contribute to high incidence of thrombotic events in COVID-19

    Characterization of a murine model of monocrotaline pyrrole-induced acute lung injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>New animal models of chronic pulmonary hypertension in mice are needed. The injection of monocrotaline is an established model of pulmonary hypertension in rats. The aim of this study was to establish a murine model of pulmonary hypertension by injection of the active metabolite, monocrotaline pyrrole.</p> <p>Methods</p> <p>Survival studies, computed tomographic scanning, histology, bronchoalveolar lavage were performed, and arterial blood gases and hemodynamics were measured in animals which received an intravenous injection of different doses of monocrotaline pyrrole.</p> <p>Results</p> <p>Monocrotaline pyrrole induced pulmonary hypertension in Sprague Dawley rats. When injected into mice, monocrotaline pyrrole induced dose-dependant mortality in C57Bl6/N and BALB/c mice (dose range 6–15 mg/kg bodyweight). At a dose of 10 mg/kg bodyweight, mice developed a typical early-phase acute lung injury, characterized by lung edema, neutrophil influx, hypoxemia and reduced lung compliance. In the late phase, monocrotaline pyrrole injection resulted in limited lung fibrosis and no obvious pulmonary hypertension.</p> <p>Conclusion</p> <p>Monocrotaline and monocrotaline pyrrole pneumotoxicity substantially differs between the animal species.</p

    Author Correction: Deficiency of Axl aggravates pulmonary arterial hypertension via BMPR2.

    Get PDF
    Abstract: Pulmonary arterial hypertension (PAH), is a fatal disease characterized by a pseudo-malignant phenotype. We investigated the expression and the role of the receptor tyrosine kinase Axl in experimental (i.e., monocrotaline and Su5416/hypoxia treated rats) and clinical PAH. In vitro Axl inhibition by R428 and Axl knock-down inhibited growth factor-driven proliferation and migration of non-PAH and PAH PASMCs. Conversely, Axl overexpression conferred a growth advantage. Axl declined in PAECs of PAH patients. Axl blockage inhibited BMP9 signaling and increased PAEC apoptosis, while BMP9 induced Axl phosphorylation. Gas6 induced SMAD1/5/8 phosphorylation and ID1/ID2 increase were blunted by BMP signaling obstruction. Axl association with BMPR2 was facilitated by Gas6/BMP9 stimulation and diminished by R428. In vivo R428 aggravated right ventricular hypertrophy and dysfunction, abrogated BMPR2 signaling, elevated pulmonary endothelial cell apoptosis and loss. Together, Axl is a key regulator of endothelial BMPR2 signaling and potential determinant of PAH

    Effects of phosphodiesterase 4 inhibition on bleomycin-induced pulmonary fibrosis in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pulmonary fibrosis (PF) is a group of devastating and largely irreversible diseases. Phosphodiesterase (PDE) 4 is involved in the processes of remodeling and inflammation, which play key role in tissue fibrosis. The aim of the study was, therefore, to investigate the effect of PDE4 inhibition in experimental model of PF.</p> <p>Methods</p> <p>PF was induced in C57BL/6N mice by instillation of bleomycin. Pharmacological inhibition of PDE4 was achieved by using cilomilast, a selective PDE4 inhibitor. Changes in either lung inflammation or remodeling were evaluated at different stages of experimental PF. Lung inflammation was assessed by bronchoalveolar lavage fluid (BALF) differential cell count and reverse transcription quantitative polymerase chain reaction (RT-qPCR) for inflammatory cytokines. Changes in tissue remodeling were evaluated by pulmonary compliance measurement, quantified pathological examination, measurement of collagen deposition and RT-qPCR for late remodeling markers. Survival in all groups was analyzed as well.</p> <p>Results</p> <p>PDE4 inhibition significantly reduced the total number of alveolar inflammatory cells in BALF of mice with bleomycin-induced PF at early fibrosis stage (days 4 and 7). Number of macrophages and lymphocytes, but not neutrophils, was significantly reduced as well. Treatment decreased lung tumor necrosis factor (TNF)-α mRNA level and increased mRNA level of interleukin (IL)-6 but did not influence IL-1β. At later stage (days 14 and 24) cilomilast improved lung function, which was shown by increase in lung compliance. It also lowered fibrosis degree, as was shown by quantified pathological examination of Hematoxilin-Eosin stained lung sections. Cilomilast had no significant effect on the expression of late remodeling markers such as transforming growth factor (TGF)-β1 and collagen type Ia1 (COL(I)α1). However, it tended to restore the level of lung collagen, assessed by SIRCOL assay and Masson's trichrome staining, and to improve the overall survival.</p> <p>Conclusions</p> <p>Selective PDE4 inhibition suppresses early inflammatory stage and attenuates the late stage of experimental pulmonary fibrosis.</p

    Maintained right ventricular pressure overload induces ventricular-arterial decoupling in mice.

    Get PDF
    Assessment of right ventricular (RV) function in rodents is a challenge due to the complex RV anatomy and structure. Subsequently, the best characterization of RV function is achieved by accurate cardiovascular phenotyping, involving a combination of non-invasive imaging and intra-cardiac pressure-volume measurements. We sought to investigate the feasibility of two complementary phenotyping techniques for the evaluation of RV function in an experimental mouse model of sustained RV pressure overload. Mice underwent either Sham surgery (n = 5) or pulmonary artery banding (PAB) (n = 8) to induce isolated RV pressure overload. After three weeks indices of RV function were assessed by echocardiography (Vevo2100) and closed chest-derived invasive pressure-volume measurements (PVR-1030). PAB resulted in RV hypertrophy and dilatation accompanied by systolic and diastolic dysfunction. Invasive RV hemodynamic measurements demonstrate an increased end-systolic as well as arterial elastance after PAB as compared to sham, resulting in ventricular-arterial decoupling. Regression analysis revealed that TAPSE is rather correlated with ventricular-arterial coupling (r² = 0.77, P = 0.002) than RV contractility (r² = -0.61, P = 0.07). Furthermore, IVRT/RR and E/E' correlate well with RV end-diastolic pressure (r² = 0.87, P = 0.0001 and r² = 0.82, P = 0.0009; respectively). Commonly used indices of systolic RV function are associated with RV-arterial coupling rather than contractility, while diastolic indices are interrelated with end-diastolic pressure where there is maintained pressure overload. This article is protected by copyright. All rights reserved
    • …
    corecore