106 research outputs found
Preface – Special issue: Multiple system atrophy
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41652/1/702_2005_Article_376.pd
Brain Structure and Degeneration Staging in Friedreich Ataxia: Magnetic Resonance Imaging Volumetrics from the ENIGMA-Ataxia Working Group
open48siThe method harmonization and multisite data analysis elements of this work were supported by the NIH BD2K (Big Data to Knowledge) program (grant U54 EB020403) and the Australian National Health and Medical Research Council (fellowship 1106533, grant 1184403).Objective: Friedreich ataxia (FRDA) is an inherited neurological disease defined by progressive movement incoordination. We undertook a comprehensive characterization of the spatial profile and progressive evolution of structural brain abnormalities in people with FRDA. Methods: A coordinated international analysis of regional brain volume using magnetic resonance imaging data charted the whole-brain profile, interindividual variability, and temporal staging of structural brain differences in 248 individuals with FRDA and 262 healthy controls. Results: The brainstem, dentate nucleus region, and superior and inferior cerebellar peduncles showed the greatest reductions in volume relative to controls (Cohen d = 1.5–2.6). Cerebellar gray matter alterations were most pronounced in lobules I–VI (d = 0.8), whereas cerebral differences occurred most prominently in precentral gyri (d = 0.6) and corticospinal tracts (d = 1.4). Earlier onset age predicted less volume in the motor cerebellum (rmax = 0.35) and peduncles (rmax = 0.36). Disease duration and severity correlated with volume deficits in the dentate nucleus region, brainstem, and superior/inferior cerebellar peduncles (rmax = −0.49); subgrouping showed these to be robust and early features of FRDA, and strong candidates for further biomarker validation. Cerebral white matter abnormalities, particularly in corticospinal pathways, emerge as intermediate disease features. Cerebellar and cerebral gray matter loss, principally targeting motor and sensory systems, preferentially manifests later in the disease course. Interpretation: FRDA is defined by an evolving spatial profile of neuroanatomical changes beyond primary pathology in the cerebellum and spinal cord, in line with its progressive clinical course. The design, interpretation, and generalization of research studies and clinical trials must consider neuroanatomical staging and associated interindividual variability in brain measures. ANN NEUROL 2021;90:570–583.openHarding I.H.; Chopra S.; Arrigoni F.; Boesch S.; Brunetti A.; Cocozza S.; Corben L.A.; Deistung A.; Delatycki M.; Diciotti S.; Dogan I.; Evangelisti S.; Franca M.C.; Goricke S.L.; Georgiou-Karistianis N.; Gramegna L.L.; Henry P.-G.; Hernandez-Castillo C.R.; Hutter D.; Jahanshad N.; Joers J.M.; Lenglet C.; Lodi R.; Manners D.N.; Martinez A.R.M.; Martinuzzi A.; Marzi C.; Mascalchi M.; Nachbauer W.; Pane C.; Peruzzo D.; Pisharady P.K.; Pontillo G.; Reetz K.; Rezende T.J.R.; Romanzetti S.; Sacca F.; Scherfler C.; Schulz J.B.; Stefani A.; Testa C.; Thomopoulos S.I.; Timmann D.; Tirelli S.; Tonon C.; Vavla M.; Egan G.F.; Thompson P.M.Harding I.H.; Chopra S.; Arrigoni F.; Boesch S.; Brunetti A.; Cocozza S.; Corben L.A.; Deistung A.; Delatycki M.; Diciotti S.; Dogan I.; Evangelisti S.; Franca M.C.; Goricke S.L.; Georgiou-Karistianis N.; Gramegna L.L.; Henry P.-G.; Hernandez-Castillo C.R.; Hutter D.; Jahanshad N.; Joers J.M.; Lenglet C.; Lodi R.; Manners D.N.; Martinez A.R.M.; Martinuzzi A.; Marzi C.; Mascalchi M.; Nachbauer W.; Pane C.; Peruzzo D.; Pisharady P.K.; Pontillo G.; Reetz K.; Rezende T.J.R.; Romanzetti S.; Sacca F.; Scherfler C.; Schulz J.B.; Stefani A.; Testa C.; Thomopoulos S.I.; Timmann D.; Tirelli S.; Tonon C.; Vavla M.; Egan G.F.; Thompson P.M
Brainstem and Spinal Cord Circuitry Regulating REM Sleep and Muscle Atonia
Previous work has suggested, but not demonstrated directly, a critical role for both glutamatergic and GABAergic neurons of the pontine tegmentum in the regulation of rapid eye movement (REM) sleep.To determine the in vivo roles of these fast-acting neurotransmitters in putative REM pontine circuits, we injected an adeno-associated viral vector expressing Cre recombinase (AAV-Cre) into mice harboring lox-P modified alleles of either the vesicular glutamate transporter 2 (VGLUT2) or vesicular GABA-glycine transporter (VGAT) genes. Our results show that glutamatergic neurons of the sublaterodorsal nucleus (SLD) and glycinergic/GABAergic interneurons of the spinal ventral horn contribute to REM atonia, whereas a separate population of glutamatergic neurons in the caudal laterodorsal tegmental nucleus (cLDT) and SLD are important for REM sleep generation. Our results further suggest that presynaptic GABA release in the cLDT-SLD, ventrolateral periaqueductal gray matter (vlPAG) and lateral pontine tegmentum (LPT) are not critically involved in REM sleep control.These findings reveal the critical and divergent in vivo role of pontine glutamate and spinal cord GABA/glycine in the regulation of REM sleep and atonia and suggest a possible etiological basis for REM sleep behavior disorder (RBD)
Targeting murine heart and brain: visualisation conditions for multi-pinhole SPECT with 99mTc- and 123I-labelled probes
The study serves to optimise conditions for multi-pinhole SPECT small animal imaging of (123)I- and (99m)Tc-labelled radiopharmaceuticals with different distributions in murine heart and brain and to investigate detection and dose range thresholds for verification of differences in tracer uptake.A Triad 88/Trionix system with three 6-pinhole collimators was used for investigation of dose requirements for imaging of the dopamine D(2) receptor ligand [(123)I]IBZM and the cerebral perfusion tracer [(99m)Tc]HMPAO (1.2-0.4 MBq/g body weight) in healthy mice. The fatty acid [(123)I]IPPA (0.94 +/- 0.05 MBq/g body weight) and the perfusion tracer [(99m)Tc]sestamibi (3.8 +/- 0.45 MBq/g body weight) were applied to cardiomyopathic mice overexpressing the prostaglandin EP(3) receptor.In vivo imaging and in vitro data revealed 45 kBq total cerebral uptake and 201 kBq cardiac uptake as thresholds for visualisation of striatal [(123)I]IBZM and of cardiac [(99m)Tc]sestamibi using 100 and 150 s acquisition time, respectively. Alterations of maximal cerebral uptake of [(123)I]IBZM by >20% (116 kBq) were verified with the prerequisite of 50% striatal of total uptake. The labelling with [(99m)Tc]sestamibi revealed a 30% lower uptake in cardiomyopathic hearts compared to wild types. [(123)I]IPPA uptake could be visualised at activity doses of 0.8 MBq/g body weight.Multi-pinhole SPECT enables detection of alterations of the cerebral uptake of (123)I- and (99m)Tc-labelled tracers in an appropriate dose range in murine models targeting physiological processes in brain and heart. The thresholds of detection for differences in the tracer uptake determined under the conditions of our experiments well reflect distinctions in molar activity and uptake characteristics of the tracers
Dopamine Transporter SPECT Imaging in Corticobasal Syndrome
evidence of preserved nigral neuronal density. imaging evidence of preserved nigral terminals have been recently described.In this multicenter study, we investigated presynaptic nigrostriatal function in 36 outpatients fulfilling clinical criteria for “probable corticobasal degeneration” (age 71±7.3 years; disease duration 3.9±1.6 years), 37 PD and 24 healthy control subjects using FP-CIT single photon emission computed tomography. Clinical, neuropsychological, and magnetic resonance imaging assessment was performed to characterize CBS patients. Linear discriminant analysis was used to categorize normal vs. pathological scans.FP-CIT binding reduction in patients with CBS was characterized by larger variability, more uniform reduction throughout the striatum and greater hemispheric asymmetry compared to PD. Moreover, there was no significant correlation between tracer uptake values and clinical features such as disease duration and severity. Despite all CBS subjects showed obvious bilateral extrapyramidal signs, FP-CIT uptake was found to be normal bilaterally in four CBS patients and only unilaterally in other four cases. Extensive clinical, neuropsychological and imaging assessment did not reveal remarkable differences between CBS subjects with normal vs. pathological FP-CIT uptake.Our findings support the hypothesis that extrapyramidal motor symptoms in CBS are not invariably associated with SNc neuronal degeneration and that supranigral factors may play a major role in several cases. CBS individuals with normal FP-CIT uptake do not show any clinical or cognitive feature suggesting a different pathology than CBD
- …