1,223 research outputs found

    A pattern-based approach to a cell tracking ontology

    No full text
    Time-lapse microscopy has thoroughly transformed our understanding of biological motion and developmental dynamics from single cells to entire organisms. The increasing amount of cell tracking data demands the creation of tools to make extracted data searchable and interoperable between experiment and data types. In order to address that problem, the current paper reports on the progress in building the Cell Tracking Ontology (CTO): An ontology framework for describing, querying and integrating data from complementary experimental techniques in the domain of cell tracking experiments. CTO is based on a basic knowledge structure: the cellular genealogy serving as a backbone model to integrate specific biological ontologies into tracking data. As a first step we integrate the Phenotype and Trait Ontology (PATO) as one of the most relevant ontologies to annotate cell tracking experiments. The CTO requires both the integration of data on various levels of generality as well as the proper structuring of collected information. Therefore, in order to provide a sound foundation of the ontology, we have built on the rich body of work on top-level ontologies and established three generic ontology design patterns addressing three modeling challenges for properly representing cellular genealogies, i.e. representing entities existing in time, undergoing changes over time and their organization into more complex structures such as situations

    The Two Faces of Wheat

    Get PDF
    Wheat-based foods have been staple foods since about 10,000 years and constitute a major source of energy, dietary fiber, and micronutrients for the world population. The role of wheat in our diet, however, has recently been scrutinized by pseudoscientific books and media reports promoting the overall impression that wheat consumption makes people sick, stupid, fat, and addicted. Consequently, numerous consumers in Western countries have started to question their dietary habits related to wheat consumption and voluntarily decided to adopt a wheat-free diet without a medical diagnosis of any wheat-related disorder (WRD), such as celiac disease, wheat allergy, or non-celiac gluten sensitivity. The aim of this review is to achieve an objective judgment of the positive aspects of wheat consumption as well as adverse effects for individuals suffering from WRDs. The first part presents wheat constituents and their positive nutritional value, in particular, the consumption of products from whole-grain flours. The second part is focused on WRDs that affect predisposed individuals and can be treated with a gluten-free or -reduced diet. Based on all available scientific knowledge, wheat consumption is safe and healthy for the vast majority of people. There is no scientific evidence to support that the general population would benefit from a wheat-free diet

    Comparative quantitative LCā€“MS/MS analysis of 13 amylase/trypsin inhibitors in ancient and modern Triticum species

    Get PDF
    Amylase/trypsin inhibitors (ATIs) are major wheat allergens and they are also implicated in causing non-celiac gluten sensitivity and worsening other inflammatory conditions. With only few studies on ATI contents in different Triticum species available so far, we developed a targeted liquid chromatography-tandem mass spectrometry (LCā€“MS/MS) method based on stable isotope dilution assays to quantitate the 13 most important ATIs in a well-defined sample set of eight cultivars of common wheat and durum wheat (modern species), as well as spelt, emmer and einkorn (ancient species) grown at three locations in Germany, respectively. Only few ATIs with low contents were detected in einkorn. In contrast, spelt had the highest total ATI contents. Emmer and common wheat had similar total ATI contents, with durum wheat having lower contents than common wheat. Due to the lack of correlation, it was not possible to estimate ATI contents based on crude protein contents. The wheat species had a higher influence on ATI contents than the growing location and the heritability of this trait was high. Despite comparatively low intra-species variability, some cultivars were identified that may be promising candidates for breeding for naturally low ATI contents

    No correlation between amylase/trypsin-inhibitor content and amylase inhibitory activity in hexaploid and tetraploid wheat species

    Get PDF
    Wheat amylase/trypsin-inhibitors (ATI) are known triggers for wheat-related disorders. The aims of our study were to determine (1) the inhibitory activity against different Ī±-amylases, (2) the content of albumins and globulins (ALGL) and total ATI and (3) to correlate these parameters in wholegrain flour of hexaploid, tetraploid and diploid wheat species. The amount of ATI within the ALGL fraction varied from 0.8% in einkorn to 20% in spelt. ATI contents measured with reversed-phase high-performance liquid chromatography (RP-HPLC) revealed similar contents (1.2ā€“4.2 mg/g) compared to the results determined by LC-MS/MS (0.2ā€“5.2 mg/g) for all wheat species except einkorn. No correlation was found between ALGL content and inhibitory activity. In general, hexaploid cultivars of spelt and common wheat had the highest inhibitory activities, showing values between 897 and 3564 AIU/g against human salivary Ī±-amylase. Tetraploid wheat species durum and emmer had lower activities (170ā€“1461 AIU/g), although a few emmer cultivars showed similar activities at one location. In einkorn, no inhibitory activity was found. No correlation was observed between the ATI content and the inhibitory activity against the used Ī±-amylases, highlighting that it is very important to look at the parameters separately

    Temperature dependent photoluminescence of organic semiconductors with varying backbone conformation

    Get PDF
    We present photoluminescence studies as a function of temperature from a series of conjugated polymers and a conjugated molecule with distinctly different backbone conformations. The organic materials investigated here are: planar methylated ladder type poly para-phenylene, semi-planar polyfluorene, and non-planar para hexaphenyl. In the longer-chain polymers the photoluminescence transition energies blue shift with increasing temperatures. The conjugated molecules, on the other hand, red shift their transition energies with increasing temperatures. Empirical models that explain the temperature dependence of the band gap energies in inorganic semiconductors can be extended to explain the temperature dependence of the transition energies in conjugated molecules.Comment: 8 pages, 9 figure

    Ontology patterns for the representation of quality changes of cells in time

    No full text
    Background: Cell tracking experiments, based on time-lapse microscopy, have become an important tool in biomedical research. The goal is the reconstruction of cell migration patterns, shape and state changes, and, comprehensive genealogical information from these data. This information can be used to develop process models of cellular dynamics. However, so far there has been no structured, standardized way of annotating and storing the tracking results, which is critical for comparative analysis and data integration. The key requirement to be satisfied by an ontology is the representation of a cellā€™s change over time. Unfortunately, popular ontology languages, such as Web Ontology Language (OWL), have limitations for the representation of temporal information. The current paper addresses the fundamental problem of modeling changes of qualities over time in biomedical ontologies specified in OWL. Results: The presented analysis is a result of the lessons learned during the development of an ontology, intended for the annotation of cell tracking experiments. We present, discuss and evaluate various representation patterns for specifying cell changes in time. In particular, we discuss two patterns of temporally changing information: n-ary relation reification and 4d fluents.These representation schemes are formalized within the ontology language OWL and are aimed at the support for annotation of cell tracking experiments. We analyze the performance of each pattern with respect to standard criteria used in software engineering and data modeling, i.e. simplicity, scalability, extensibility and adequacy. We further discuss benefits, drawbacks, and the underlying design choices of each approach. Conclusions: We demonstrate that patterns perform differently depending on the temporal distribution of modeled information. The optimal model can be constructed by combining two competitive approaches. Thus, we demonstrate that both reification and 4d fluents patterns can work hand in hand in a single ontology. Additionally, we have found that 4d fluents can be reconstructed by two patterns well known in the computer science community, i.e. state modeling and actor-role pattern

    Spectral and Photophysical Studies of Poly[2,6-(1,5-dioctylnaphthalene)]thiophenes

    Get PDF
    A complete spectroscopic and photophysical study of three alternating naphthalene-Ī±-thiophene copolymers was undertaken in solution (room and low temperature) and in the solid state (thin films in a Zeonex matrix). The study comprises absorption, emission, and tripletāˆ’triplet spectra together with quantitative measurements of quantum yield (fluorescence, intersystem-crossing, internal conversion, and singlet oxygen formation) lifetimes and singlet and triplet energies. The overall data allow the determination of the rate constants for all the decay processes. Comparison between the behavior of analogous 1-naphthyl(oligo)thiophenes and the 2,6-naphthalene(oligo)thiophene copolymers allows several important observations. First, the polymers display higher fluorescence quantum yields and lower S1ā†’T1 intersystem-crossing yields than the oligomers. This can be attributed to the presence of the 1,5-dioctyloxynaphthalene groups in the copolymers leading to a more rigid polymer backbone, which decreases radiationless deactivation and increases the radiative efficiency. Second, the singlet and triplet energies are significantly lower in the polymers than with the corresponding oligomers. This implies a lower HOMOāˆ’LUMO energy difference in the polymers due to an extended Ļ€-delocalization. Third, the singlet-to-triplet (S1āˆ’T1) energy splitting is higher in the oligomers than with the polymers, even though the former display higher intersystem-crossing yields. It is suggested that this may result from intersystem-crossing in the oligomers involving significant charge-transfer (CT) character (spin-orbit coupling is mediated by CT mixing involving the singlet and triplet states in matrix elements of the type 1ĪØCT |Hā€˜|3ĪØ1) of the relevant excited states but that is less important with the polymers. We believe that this may be relevant to understanding the nature of CT states in conjugated copolymers
    • ā€¦
    corecore