1,258 research outputs found

    Corn Stalk Nitrate Concentration Profile

    Get PDF
    The end-of-season nitrate test provides a method of assessing the N available to the corn (Zea mays L.) crop during the latter part of the season. This study was conducted to determine how stalk nitrate test results and interpretations are affected by sample composition. Stalks were collected from three filed sites and separated into phytomers (node plus internode above), which were subdivided into three or five segments after length was measured. Nitrate-N concentration of phytomers decreased linearly from the soil to the ear. Within a phytomer, segments also decreased acropetally (from base to apex). Node tissue NO3-N concentration did not differ from that of the internode segment immediately above the node. Weighted means were used to compute NO3-N concentration of stalk samples collected 5 cm higher (from 20 to 40 cm above the soil) or lower (from 10 to 30 cm above the soil). Although the three samples (10-30, 15-35, and 20-40 cm) differed in NO3-N concentration, the difference was only about 15% compared with the 25% difference in sampling position (± 5 cm of 20-cm sample length). The phytomer nearest the soil had 35 to 40% greater NO3-N concentrations than the section of stalk 15 to 35 cm above the soil. Critical values delineating yield-limiting adequate, and excessive N availability should be modified if stalk sections other than the standard 15 to 35 cm section are used. However, the qualitative nature of the stalk nitrate test and the range of NO3-N concentrations observed with reasonable corn cultural practices (1000x) make this test quite robust and precise definition of sample composition and critical values less necessary

    Final results from the EU project AVATAR: aerodynamic modelling of 10 MW wind turbines

    Get PDF
    This paper presents final results from the EU project AVATAR in which aerodynamic models are improved and validated for wind turbines on a scale of 10 MW and more. Special attention is paid to the improvement of low fidelity engineering (BEM based) models with higher fidelity (CFD) models but also with intermediate fidelity free vortex wake (FVW) models. The latter methods were found to be a good basis for improvement of induction modelling in engineering methods amongst others for the prediction of yawed cases, which in AVATAR was found to be one of the most challenging subjects to model. FVW methods also helped to improve the prediction of tip losses. Aero-elastic calculations with BEM based and FVW based models showed that fatigue loads for normal production cases were over predicted with approximately 15% or even more. It should then be realised that the outcome of BEM based models does not only depend on the choice of engineering add-ons (as is often assumed) but it is also heavily dependent on the way the induced velocities are solved. To this end an annulus and element approach are discussed which are assessed with the aid of FVW methods. For the prediction of fatigue loads the so-called element approach is recommended but the derived yaw models rely on an annulus approach which pleads for a generalised solution method for the induced velocities

    Latest results from the EU project AVATAR: aerodynamic modelling of 10 MW wind turbines

    Get PDF
    This paper presents the most recent results from the EU project AVATAR in which aerodynamic models are improved and validated for wind turbines on a scale of 10 MW and more. Measurements on a DU 00-W-212 airfoil are presented which have been taken in the pressurized DNW-HDG wind tunnel up to a Reynolds number of 15 Million. These measurements are compared with measurements in the LM wind tunnel for Reynolds numbers of 3 and 6 Million and with calculational results. In the analysis of results special attention is paid to high Reynolds numbers effects. CFD calculations on airfoil performance showed an unexpected large scatter which eventually was reduced by paying even more attention to grid independency and domain size in relation to grid topology. Moreover calculations are presented on flow devices (leading and trailing edge flaps and vortex generators). Finally results are shown between results from 3D rotor models where a comparison is made between results from vortex wake methods and BEM methods at yawed conditions

    Toward accurate CO_2 and CH_4 observations from GOSAT

    Get PDF
    The column-average dry air mole fractions of atmospheric carbon dioxide and methane (X_(CO_2) and X_(CH_4)) are inferred from observations of backscattered sunlight conducted by the Greenhouse gases Observing SATellite (GOSAT). Comparing the first year of GOSAT retrievals over land with colocated ground-based observations of the Total Carbon Column Observing Network (TCCON), we find an average difference (bias) of −0.05% and −0.30% for X_(CO_2) and X_(CH_4) with a station-to-station variability (standard deviation of the bias) of 0.37% and 0.26% among the 6 considered TCCON sites. The root-mean square deviation of the bias-corrected satellite retrievals from colocated TCCON observations amounts to 2.8 ppm for X_(CO_2) and 0.015 ppm for X_(CH_4). Without any data averaging, the GOSAT records reproduce general source/sink patterns such as the seasonal cycle of X_(CO_2) suggesting the use of the satellite retrievals for constraining surface fluxes

    Full 3-D digital planning of implant-supported bridges in secondary mandibular reconstruction with prefabricated fibula free flaps

    Get PDF
    Objectives In the reconstruction of maxillary or mandibular continuity defects in dentate patients, the most favourable treatment is placement of implant-retained crowns or bridges in a bone graft that reconstructs the defect. Proper implant positioning is often impaired by suboptimal placement of the bone graft. This case describes a new technique of a full digitally planned, immediate restoration, two-step surgical approach for reconstruction of a mandibular defect using a free vascularised fibula graft with implants and a bridge. Procedure A 68-year-old male developed osteoradionecrosis of the mandible. The resection, cutting and implant placement in the fibula were virtually planned. Cutting and drilling guides were 3-D printed, and the bridge was computer aided design-computer aided manufacturing (CAD-CAM) milled. During the first surgery, two implants were placed in the fibula according to the digital planning, and the position of the implants was scanned using an intra-oral optical scanner. During the second surgery, a bridge was placed on the implants, and the fibula was harvested and fixed in the mandibular defect, guided by the occlusion of the bridge. Conclusion Three-dimensional planning allowed for positioning of a fibula bone graft by means of an implant-supported bridge, which resulted in a functional position of the graft and bridge.</p
    • 

    corecore