66 research outputs found

    High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma

    Get PDF
    BACKGROUND: HMGA2 expression has been shown to be associated with enhanced selective chemosensitivity towards the topoisomerase (topo) II inhibitor, doxorubicin, in cancer cells. Although the roles of signaling cascades and proteins as regulatory factors in development, neoplasia and adaptation to the environment are becoming well established, evidence for the involvement of regulatory small RNA molecules, such as microRNAs (miRNAs) as important regulators of both transcriptional and posttranscriptional gene silencing is presently mounting. RESULTS: Here we report that HMGA2 expression in head and neck squamous cell carcinoma (HNSCC) cells is regulated in part by miRNA-98 (miR-98). Albeit HMGA2 is associated with enhanced selective chemosensitivity towards topoisomerase (topo) II inhibitor, doxorubicin in HNSCC, the expression of HMGA2 is thwarted by hypoxia. This is accompanied by enhanced expression of miRNA-98 and other miRNAs, which predictably target HMGA2. Moreover, we show that transfection of pre-miR-98™ during normoxia diminishes HMGA2 and potentiates resistance to doxorubicin and cisplatin. These findings implicate the role of a miRNA as a key element in modulating tumors in variable microenvironments. CONCLUSION: These studies validate the observation that HMGA2 plays a prominent role in governing genotoxic responses. However, this may only represent cells growing under normal oxygen tensions. The demonstration that miRNA profiles are altered during hypoxia and repress a genotoxic response indicates that changes in microenvironment in eukaryotes mimic those of lower species and plants, where, for example, abiotic stresses regulate the expression of thousands of genes in plants at both transcriptional and posttranscriptional levels through a number of miRNAs and other small regulatory RNAs

    A Novel Immune Evasion Strategy of Candida albicans: Proteolytic Cleavage of a Salivary Antimicrobial Peptide

    Get PDF
    Oropharyngeal candidiasis is an opportunistic infection considered to be a harbinger of AIDS. The etiologic agent Candida albicans is a fungal species commonly colonizing human mucosal surfaces. However, under conditions of immune dysfunction, colonizing C. albicans can become an opportunistic pathogen causing superficial or even life-threatening infections. The reasons behind this transition, however, are not clear. In the oral cavity, salivary antimicrobial peptides are considered to be an important part of the host innate defense system in the prevention of microbial colonization. Histatin-5 specifically has exhibited potent activity against C. albicans. Our previous studies have shown histatin-5 levels to be significantly reduced in the saliva of HIV+ individuals, indicating an important role for histatin-5 in keeping C. albicans in its commensal stage. The versatility in the pathogenic potential of C. albicans is the result of its ability to adapt through the regulation of virulence determinants, most notably of which are proteolytic enzymes (Saps), involved in tissue degradation. In this study, we show that C. albicans cells efficiently and rapidly degrade histatin-5, resulting in loss of its anti-candidal potency. In addition, we demonstrate that this cellular activity is due to proteolysis by a member of the secreted aspartic proteases (Sap) family involved in C. albicans pathogenesis. Specifically, the proteolysis was attributed to Sap9, in turn identifying histatin-5 as the first host-specific substrate for that isoenzyme. These findings demonstrate for the first time the ability of a specific C. albicans enzyme to degrade and deactivate a host antimicrobial peptide involved in the protection of the oral mucosa against C. albicans, thereby providing new insights into the factors directing the transition of C. albicans from commensal to pathogen, with important clinical implications for alternative therapy. This report characterizes the first defined mechanism behind the enhanced susceptibility of HIV+ individuals to oral candidiasis since the emergence of HIV

    Microbial interactions and differential protein expression in Staphylococcus aureus –Candida albicans dual-species biofilms

    Get PDF
    The fungal species Candida albicans and the bacterial species Staphylococcus aureus are responsible for a majority of hospital-acquired infections and often coinfect critically ill patients as complicating polymicrobial biofilms. To investigate biofilm structure during polymicrobial growth, dual-species biofilms were imaged with confocal scanning laser microscopy. Analyses revealed a unique biofilm architecture where S. aureus commonly associated with the hyphal elements of C. albicans. This physical interaction may provide staphylococci with an invasion strategy because candidal hyphae can penetrate through epithelial layers. To further understand the molecular mechanisms possibly responsible for previously demonstrated amplified virulence during coinfection, protein expression studies were undertaken. Differential in-gel electrophoresis identified a total of 27 proteins to be significantly differentially produced by these organisms during coculture biofilm growth. Among the upregulated staphylococcal proteins was l-lactate dehydrogenase 1, which confers resistance to host-derived oxidative stressors. Among the downregulated proteins was the global transcriptional repressor of virulence factors, CodY. These findings demonstrate that the hyphae-mediated enhanced pathogenesis of S. aureus may not only be due to physical interactions but can also be attributed to the differential regulation of specific virulence factors induced during polymicrobial growth. Further characterization of the intricate interaction between these pathogens at the molecular level is warranted, as it may aid in the design of novel therapeutic strategies aimed at combating fungal–bacterial polymicrobial infection

    Projecting terrestrial biodiversity intactness with GLOBIO 4

    Get PDF
    Scenario-based biodiversity modelling is a powerful approach to evaluate how possible future socio-economic developments may affect biodiversity. Here, we evaluated the changes in terrestrial biodiversity intactness, expressed by the mean species abundance (MSA) metric, resulting from three of the shared socio-economic pathways (SSPs) combined with different levels of climate change (according to representative concentration pathways [RCPs]): a future oriented towards sustainability (SSP1xRCP2.6), a future determined by a politically divided world (SSP3xRCP6.0) and a future with continued global dependency on fossil fuels (SSP5xRCP8.5). To this end, we first updated the GLOBIO model, which now runs at a spatial resolution of 10 arc-seconds (~300 m), contains new modules for downscaling land use and for quantifying impacts of hunting in the tropics, and updated modules to quantify impacts of climate change, land use, habitat fragmentation and nitrogen pollution. We then used the updated model to project terrestrial biodiversity intactness from 2015 to 2050 as a function of land use and climate changes corresponding with the selected scenarios. We estimated a global area-weighted mean MSA of 0.56 for 2015. Biodiversity intactness declined in all three scenarios, yet the decline was smaller in the sustainability scenario (-0.02) than the regional rivalry and fossil-fuelled development scenarios (-0.06 and -0.05 respectively). We further found considerable variation in projected biodiversity change among different world regions, with large future losses particularly for sub-Saharan Africa. In some scenario-region combinations, we projected future biodiversity recovery due to reduced demands for agricultural land, yet this recovery was counteracted by increased impacts of other pressures (notably climate change and road disturbance). Effective measures to halt or reverse the decline of terrestrial biodiversity should not only reduce land demand (e.g. by increasing agricultural productivity and dietary changes) but also focus on reducing or mitigating the impacts of other pressures.Peer reviewe

    Farnesol-Induced Apoptosis in Candida albicans Is Mediated by Cdr1-p Extrusion and Depletion of Intracellular Glutathione

    Get PDF
    Farnesol is a key derivative in the sterol biosynthesis pathway in eukaryotic cells previously identified as a quorum sensing molecule in the human fungal pathogen Candida albicans. Recently, we demonstrated that above threshold concentrations, farnesol is capable of triggering apoptosis in C. albicans. However, the exact mechanism of farnesol cytotoxicity is not fully elucidated. Lipophilic compounds such as farnesol are known to conjugate with glutathione, an antioxidant crucial for cellular detoxification against damaging compounds. Glutathione conjugates act as substrates for ATP-dependent ABC transporters and are extruded from the cell. To that end, this current study was undertaken to validate the hypothesis that farnesol conjugation with intracellular glutathione coupled with Cdr1p-mediated extrusion of glutathione conjugates, results in total glutathione depletion, oxidative stress and ultimately fungal cell death. The combined findings demonstrated a significant decrease in intracellular glutathione levels concomitant with up-regulation of CDR1 and decreased cell viability. However, addition of exogenous reduced glutathione maintained intracellular glutathione levels and enhanced viability. In contrast, farnesol toxicity was decreased in a mutant lacking CDR1, whereas it was increased in a CDR1-overexpressing strain. Further, gene expression studies demonstrated significant up-regulation of the SOD genes, primary enzymes responsible for defense against oxidative stress, with no changes in expression in CDR1. This is the first study describing the involvement of Cdr1p-mediated glutathione efflux as a mechanism preceding the farnesol-induced apoptotic process in C. albicans. Understanding of the mechanisms underlying farnesol-cytotoxicity in C. albicans may lead to the development of this redox-cycling agent as an alternative antifungal agent

    21st century (clinical) decision support in nursing and allied healthcare. Developing a learning health system:a reasoned design of a theoretical framework

    Get PDF
    In this paper, we present a framework for developing a Learning Health System (LHS) to provide means to a computerized clinical decision support system for allied healthcare and/or nursing professionals. LHSs are well suited to transform healthcare systems in a mission-oriented approach, and is being adopted by an increasing number of countries. Our theoretical framework provides a blueprint for organizing such a transformation with help of evidence based state of the art methodologies and techniques to eventually optimize personalized health and healthcare. Learning via health information technologies using LHS enables users to learn both individually and collectively, and independent of their location. These developments demand healthcare innovations beyond a disease focused orientation since clinical decision making in allied healthcare and nursing is mainly based on aspects of individuals’ functioning, wellbeing and (dis)abilities. Developing LHSs depends heavily on intertwined social and technological innovation, and research and development. Crucial factors may be the transformation of the Internet of Things into the Internet of FAIR data &amp; services. However, Electronic Health Record (EHR) data is in up to 80% unstructured including free text narratives and stored in various inaccessible data warehouses. Enabling the use of data as a driver for learning is challenged by interoperability and reusability. To address technical needs, key enabling technologies are suitable to convert relevant health data into machine actionable data and to develop algorithms for computerized decision support. To enable data conversions, existing classification and terminology systems serve as definition providers for natural language processing through (un)supervised learning. To facilitate clinical reasoning and personalized healthcare using LHSs, the development of personomics and functionomics are useful in allied healthcare and nursing. Developing these omics will be determined via text and data mining. This will focus on the relationships between social, psychological, cultural, behavioral and economic determinants, and human functioning. Furthermore, multiparty collaboration is crucial to develop LHSs, and man-machine interaction studies are required to develop a functional design and prototype. During development, validation and maintenance of the LHS continuous attention for challenges like data-drift, ethical, technical and practical implementation difficulties is required.</p

    Farnesol, a Fungal Quorum-Sensing Molecule Triggers Apoptosis in Human Oral Squamous Carcinoma Cells1

    Get PDF
    Farnesol is a catabolite within the isoprenoid/cholesterol pathway that has exhibited significant antitumor activity. Farnesol was recently identified as a quorum-sensing molecule produced by the fungal pathogen Candida albicans. In this study, we hypothesize that synthetic and Candida-produced farnesol can induce apoptosis in vitro in oral squamous cell carcinoma (OSCC) lines. Cell proliferation, apoptosis, mitochondrial degradation, and survivin and caspase expressions were examined. In addition, global protein expression profiles were analyzed using proteomic analysis. Results demonstrated significant decrease in proliferation and increase in apoptosis in cells exposed to farnesol and C. albicans culture media. Concurrently, protein expression analysis demonstrated a significant decrease in survivin and an increase in cleaved-caspase expression, whereas fluorescent microscopy revealed the presence of active caspases with mitochondrial degradation in exposed cells. A total of 36 differentially expressed proteins were identified by proteomic analysis. Among the 26 up-regulated proteins were those involved in the inhibition of carcinogenesis, proliferation suppression, and aging. Most notable among the 10 down-regulated proteins were those involved in the inhibition of apoptosis and proteins overexpressed in epithelial carcinomas. This study demonstrates that farnesol significantly inhibits the proliferation of OSCCs and promotes apoptosis in vitro through both the intrinsic and extrinsic apoptotic signaling pathways. In addition, we report for the first time the ability of Candida-produced farnesol to induce a similar apoptotic response through the same pathways. The capability of farnesol to trigger apoptosis in cancer cells makes it a potential tool for studying tumor progression and an attractive candidate as a therapeutic agent

    Sulindac Induces Apoptosis and Inhibits Tumor Growth in vivo in Head and Neck Squamous Cell Carcinoma

    Get PDF
    Sulindac has antineoplastic effects on various cancer cell lines; consequently, we assessed sulindac's effects on laryngeal squamous cell carcinoma (SCC) cells in vitro and in vivo. In vitro, SCC (HEP-2) cells treated with various cyclooxygenase inhibitors or transfected with constitutively active signal transducer and activator of transcription 3 (Stat3) or survivin vectors were analyzed using Western blot analysis, annexin V assay, and cell proliferation assay. In parallel, nude mice injected subcutaneously with HEP-2 cells were either treated intraperitoneally with sulindac or left untreated, and analyzed for tumor weight, survivin expression, and tyrosine-phosphorylated Stat3 expression. In vitro studies confirmed the selective antiproliferative and proapoptotic effects of sulindac, which also downregulated Stat3 and survivin protein expression. Stat3 or survivin forced expression partially rescued the antiproliferative effects of sulindac. In vivo studies showed significant repression of HEP-2 xenograft growth in sulindactreated mice versus controls, with near-complete resolution at 10 days. Additionally, tumor specimens treated with sulindac showed downregulation of phosphorylated tyrosine-705 Stat3 and survivin expression. Taken together, our data suggest, for the first time, a specific inhibitory effect of sulindac on tumor growth and survivin expression in laryngeal cancer, both in vitro and in vivo, in a Stat3-dependent manner, suggesting a novel therapeutic approach to head and neck cancer

    Disability in adolescents and adults diagnosed with hypermobility-related disorders : a meta-analysis

    No full text
    OBJECTIVE: To (1) establish the association of the most common reported symptoms on disability; and (2) study the effectiveness of treatment on disability in patients with Ehlers-Danlos syndrome-hypermobility type (EDS-HT)/hypermobility syndrome (HMS). DATA SOURCES: An electronic search (Medical Subject Headings and free-text terms) was conducted in bibliographic databases CENTRAL/MEDLINE. STUDY SELECTION: Comparative, cross-sectional, longitudinal cohort studies and (randomized) controlled trials including patients with HMS/EDS-HT aged ≥17 years were considered for inclusion. A class of symptoms was included when 5 publications were available. In regards to treatment (physical, cognitive interventions), only (randomized) controlled trials were considered. Surgical and medicinal interventions were excluded. DATA EXTRACTION: Bias was assessed according to the methodological scoring tools of the Cochrane collaboration. Z-score transformations were applied to classify the extent of disability in comparison with healthy controls and to ensure comparability between studies. DATA SYNTHESIS: Initially, the electronic search yielded 714 publications, and 21 articles remained for analysis after selection. The following symptoms were included for meta-analysis: pain (n=12), fatigue (n=6), and psychological distress (n=7). Pain (r=.64, P=.021), fatigue (r=.91, P=.011), and psychological distress (r=.86, P=.018) had a significant impact on disability. Regarding treatment, a significant pain reduction was achieved by a variety of physical and cognitive approaches. Treatment effectiveness on disability was not established. CONCLUSIONS: Disability can affect patients with HMS/EDS-HT significantly and is highly correlated with both physical and psychological factors. Although evidence is available that physical and psychological treatment modalities can induce significant pain reduction, the evidence regarding disability reduction is lacking
    corecore