5,151 research outputs found

    Application of a differentiator-based adaptive super-twisting controller for a redundant cable-driven parallel robot

    Get PDF
    In this paper we present preliminary, experimental results of an Adaptive Super-Twisting Sliding-Mode Controller with time-varying gains for redundant Cable-Driven Parallel Robots. The sliding-mode controller is paired with a feed-forward action based on dynamics inversion. An exact sliding-mode differentiator is implemented to retrieve the velocity of the end-effector using only encoder measurements with the properties of finite-time convergence, robustness against perturbations and noise filtering. The platform used to validate the controller is a robot with eight cables and six degrees of freedom powered by 940 W compact servo drives. The proposed experiment demonstrates the performance of the controller, finite-time convergence and robustness in tracking a trajectory while subject to external disturbances up to approximately 400% the mass of the end-effector

    Electrostatic extraction of cold molecules from a cryogenic reservoir

    Full text link
    We present a method which delivers a continuous, high-density beam of slow and internally cold polar molecules. In our source, warm molecules are first cooled by collisions with a cryogenic helium buffer gas. Cold molecules are then extracted by means of an electrostatic quadrupole guide. For ND3_3 the source produces fluxes up to (7±47)×1010(7 \pm ^{7}_{4}) \times 10^{10} molecules/s with peak densities up to (1.0±0.61.0)×109(1.0 \pm ^{1.0}_{0.6}) \times 10^9 molecules/cm3^3. For H2_2CO the population of rovibrational states is monitored by depletion spectroscopy, resulting in single-state populations up to (82±10)(82 \pm 10)%.Comment: 4 pages, 4 figures, changes to the text, updated figures and reference

    3-Dimensional Core-Collapse

    Full text link
    In this paper, we present the results of 3-dimensional collapse simulations of rotating stars for a range of stellar progenitors. We find that for the fastest spinning stars, rotation does indeed modify the convection above the proto-neutron star, but it is not fast enough to cause core fragmentation. Similarly, although strong magnetic fields can be produced once the proto-neutron star cools and contracts, the proto-neutron star is not spinning fast enough to generate strong magnetic fields quickly after collapse and, for our simulations, magnetic fields will not dominate the supernova explosion mechanism. Even so, the resulting pulsars for our fastest rotating models may emit enough energy to dominate the total explosion energy of the supernova. However, more recent stellar models predict rotation rates that are much too slow to affect the explosion, but these models are not sophisticated enough to determine whether the most recent, or past, stellar rotation rates are most likely. Thus, we must rely upon observational constraints to determine the true rotation rates of stellar cores just before collapse. We conclude with a discussion of the possible constraints on stellar rotation which we can derive from core-collapse supernovae.Comment: 34 pages (5 of 17 figures missing), For full paper, goto http://qso.lanl.gov/~clf/papers/rot.ps.gz accepted by Ap

    'Parasitic invasions' or sources of good governance: constraining foreign competition in Hong Kong banking, 1956-81

    Get PDF
    This paper investigates the operation and impact of the moratorium on new banking licences imposed in Hong Kong in 1965 and the claims that foreign banks destabilised the banking system and drained resources from the colony. First it examines foreign banks' attempts to circumvent the moratorium through claims of special circumstances and buying interests in local banks, and secondly it examines the efforts of incumbents to extend barriers to non-bank financial institutions and to branches of foreign banks. The general conclusions are that while the moratorium was aimed at increasing the stability of the banking system, it had the effect of decreasing the regulatory breadth of the government, and reducing incentives for mergers and acquisitions that might have improved governance

    Sporopollenin, a natural copolymer, is robust under high hydrostatic pressure

    Get PDF
    Lycopodium sporopollenin, a natural copolymer, shows exceptional stability under high hydrostatic pressures (10 GPa) as determined by in situ high pressure synchrotron source FTIR spectroscopy. This stability is evaluated in terms of the component compounds of the sporopollenin: p-coumaric acid, phloretic acid, ferulic acid, and palmitic and sebacic acids, which represent the additional n-acid and ndiacid components. This high stability is attributed to interactions between these components, rather than the exceptional stability of any one molecular component. We propose a biomimetic solution for the creation of polymer materials that can withstand high pressures for a multitude of uses in aeronautics, vascular autografts, ballistics and light-weight protective materials

    Attosecond control of electrons emitted from a nanoscale metal tip

    Full text link
    Attosecond science is based on steering of electrons with the electric field of well-controlled femtosecond laser pulses. It has led to, for example, the generation of XUV light pulses with a duration in the sub-100-attosecond regime, to the measurement of intra-molecular dynamics by diffraction of an electron taken from the molecule under scrutiny, and to novel ultrafast electron holography. All these effects have been observed with atoms or molecules in the gas phase. Although predicted to occur, a strong light-phase sensitivity of electrons liberated by few-cycle laser pulses from solids has hitherto been elusive. Here we show a carrier-envelope (C-E) phase-dependent current modulation of up to 100% recorded in spectra of electrons laser-emitted from a nanometric tungsten tip. Controlled by the C-E phase, electrons originate from either one or two sub-500as long instances within the 6-fs laser pulse, leading to the presence or absence of spectral interference. We also show that coherent elastic re-scattering of liberated electrons takes place at the metal surface. Due to field enhancement at the tip, a simple laser oscillator suffices to reach the required peak electric field strengths, allowing attosecond science experiments to be performed at the 100-Megahertz repetition rate level and rendering complex amplified laser systems dispensable. Practically, this work represents a simple, exquisitely sensitive C-E phase sensor device, which can be shrunk in volume down to ~ 1cm3. The results indicate that the above-mentioned novel attosecond science techniques developed with and for atoms and molecules can also be employed with solids. In particular, we foresee sub-femtosecond (sub-) nanometre probing of (collective) electron dynamics, such as plasmon polaritons, in solid-state systems ranging in size from mesoscopic solids via clusters to single protruding atoms.Comment: Final manuscript version submitted to Natur

    Physical Approach to Ferroelectric Impedance Spectroscopy: The Rayleigh Element

    Get PDF
    The Rayleigh law describes the linear dependence of the permittivity of a ferroelectric on the applied ac electric field amplitude due to irreversible motions of domain walls. We show that this gives rise to a new equivalent-circuit element predestined to fit the impedance spectra of ferroelectrics based on an accepted physical model. Such impedance spectroscopy is a powerful tool to obtain a dielectric and resistive representation of the entire sample structure. The superiority of the Rayleigh analysis based on impedance spectroscopy compared to the common single-frequency approach is demonstrated for a ferroelectric Si : HfO₂ thin fil

    Optimization of quasi-normal eigenvalues for Krein-Nudelman strings

    Full text link
    The paper is devoted to optimization of resonances for Krein strings with total mass and statical moment constraints. The problem is to design for a given αR\alpha \in \R a string that has a resonance on the line \alpha + \i \R with a minimal possible modulus of the imaginary part. We find optimal resonances and strings explicitly.Comment: 9 pages, these results were extracted in a slightly modified form from the earlier e-print arXiv:1103.4117 [math.SP] following an advise of a journal's refere

    Pion dispersion relation at finite density and temperature

    Get PDF
    We study the behavior of the pion dispersion relation in a pion medium at finite density and temperature. We introduce a pion chemical potential to describe the finite pion number density and argue that such description is valid during the hadronic phase of a relativistic heavy-ion collision between chemical and thermal freeze-out. We make use of an effective Lagrangian that explicitly respects chiral symmetry through the enforcement of the chiral Ward identities. The pion dispersion relation is computed through the computation of the pion self-energy in a non-perturbative fashion by giving an approximate solution to the Schwinger-Dyson equation for this self-energy. The dispersion relation is described in terms of a density and temperature dependent mass and an index of refraction which is also temperature, density as well as momentum dependent. The index of refraction is larger than unity for all values of the momentum for finite μ\mu and TT. We conclude by exploring some of the possible consequences for the propagation of pions through the boundary between the medium and vacuum.Comment: 7 pages, 5 figures, 3 new references, published versio

    Thermal Pions at Finite Isospin Chemical Potential

    Get PDF
    The density corrections, in terms of the isospin chemical potential μI\mu_I, to the mass of the pions are studied in the framework of the SU(2) low energy effective chiral lagrangian. The pion decay constant fπ(T,μI)f_{\pi}(T, \mu_{I}) is also analized. As a function of temperature for μI=0\mu_I =0, the mass remains quite stable, starting to grow for very high values of TT, confirming previous results. However, there are interesting corrections to the mass when both effects (temperature and chemical potential) are simultaneously present. At zero temperature the π±\pi ^{\pm} should condensate when μI=mπ\mu_{I} = \mp m_{\pi}. This is not longer valid anymore at finite TT. The mass of the π0\pi_0 acquires also a non trivial dependence on μI\mu_I due to the finite temperature.Comment: 13 pages, 5 figure
    corecore