75 research outputs found

    Inactivation of the Saccharomyces cerevisiae SKY1 gene induces a specific modification of the yeast anticancer drug sensitivity profile accompanied by a mutator phenotype

    Get PDF
    The therapeutic potential of the highly active anticancer agent cisplatin is severely limited by the occurrence of cellular resistance. A better understanding of the molecular pathways involved in cisplatin-induced cell death could potentially indicate ways to overcome cellular unresponsiveness to the drug and thus lead to better treatment results. We used the budding yeast Saccharomyces cerevisiae as a model organism to identify and characterize novel genes involved in cisplatin-induced cell kill, and found that SKY1 (SR-protein-specific kinase from budding yeast) is a cisplatin sensitivity gene whose disruption conferred cisplatin resistance. In cross-resistance studies, we observed resistance of yeast sky1 Delta cells (i.e., cells from which the SKY1 gene had been disrupted) to cisplatin, carboplatin (but not oxaliplatin), doxorubicin and daunorubicin, and hypersensitivity to cadmium chloride and 5-fluorouracil. Furthermore, these cells did not display reduced platinum accumulation, DNA platination or doxorubicin accumulation, indicating that the resistance is unrelated to decreased drug import or increased drug export. Based on the modification of the anticancer drug sensitivity profile and our finding that sky1 Delta cells display a mutator phenotype, we propose that Sky1p might play a significant role in specific repair and/or tolerance pathways. Disruption of the S. cerevisiae SKY1 gene would thus result in deregulation of such mechanisms and, consequently, lead to altered drug sensitivity

    SKY1 is involved in cisplatin-induced cell kill in Saccharomyces cerevisiae, and inactivation of its human homologue, SRPK1, induces cisplatin resistance in a human ovarian carcinoma cell line

    Get PDF
    The therapeutic potential of cisplatin, one of the most active and widely used anticancer drugs, is severely limited by the occurrence of cellular resistance. In this study, using budding yeast Saccharomyces cerevisiae as a model organism to identify novel drug resistance genes, we found that disruption of the yeast gene SKY1 (serine/arginine-rich protein-specific kinase from budding yeast) by either transposon insertion or one-step gene replacement conferred cellular resistance to cisplatin. Heterologous expression of the human SKY1 homologue SRPK1 (serine/arginine-rich protein-specific kinase) in SKY1 deletion mutant yeast cells restored cisplatin sensitivity, suggesting that SRPK1 is a cisplatin sensitivity gene, the inactivation of which could lead to cisplatin resistance. Subsequently, we investigated the role of SRPK1 in cisplatin sensitivity and resistance in human ovarian carcinoma A2780 cells using antisense oligodeoxynucleotides. Treatment of A2780 cells with antisense oligodeoxynucleotides directed against the translation initiation site of SRPK1 led to down-regulation of SRPK1 protein and conferred a 4-fold resistance to cisplatin. The human SRPK1 gene has not been associated with drug resistance before. Our new findings strongly suggest that SRPK1 is involved in cisplatin-induced cell kill and indicate that SRPK1 might potentially be of importance for studying clinical drug resistance

    Moving average quality control of routine chemistry and hematology parameters: a toolbox for implementation

    Get PDF
    ObjectivesMoving average quality control (MA QC) is a patient-based real-time quality control system. Advantages compared to conventional periodic internal quality control (IQC) include absence of commutability problems and continuous monitoring of performance. We implemented MA QC for multiple routine hematology and chemistry parameters. We describe the evaluation process and provide practical tools to aid MA QC implementation.MethodsNine parameters (serum sodium, calcium, bicarbonate and free thyroxine, hemoglobin [Hb], mean corpuscular volume, mean corpuscular hemoglobin concentration [MCHC], reticulocyte count and erythrocyte sedimentation rate [ESR]) were chosen for initial consideration. Using data extractions from the laboratory information system (LIS; General Laboratory Information Management System), evaluation of usefulness and optimization of MA QC settings was performed using bias detection curves. After this, MA QC settings were incorporated in our LIS for further evaluation and implementation in routine care.ResultsThree out of nine parameters (Hb, ESR, and sodium) were excluded from MA QC implementation due to high variation and technical issues in the LIS. For the six remaining parameters, MA QC showed added value to IQC and was therefore implemented in the LIS. For three parameters a direct MA alarm work-up method was set up, including newly developed built-in features in the LIS. For the other parameters, we identified MA utilization beyond real-time monitoring.ConclusionsImplementation of MA QC has added value for our laboratory setting. Additional utilization beyond real-time QC monitoring was identified. We find MA QC especially useful for trend monitoring, detection of small shifts after maintenance and inter-analyzer comparisons.Afdeling Klinische Chemie en Laboratoriumgeneeskunde (AKCL

    Moving average quality control of routine chemistry and hematology parameters: a toolbox for implementation

    Get PDF
    Objectives: Moving average quality control (MA QC) is a patient-based real-time quality control system. Advantages compared to conventional periodic internal quality control (IQC) include absence of commutability problems and continuous monitoring of performance. We implemented MA QC for multiple routine hematology and chemistry parameters. We describe the evaluation process and provide practical tools to aid MA QC implementation. Methods: Nine parameters (serum sodium, calcium, bicarbonate and free thyroxine, hemoglobin [Hb], mean corpuscular volume, mean corpuscular hemoglobin concentration [MCHC], reticulocyte count and erythrocyte sedimentation rate [ESR]) were chosen for initial consideration. Using data extractions from the laboratory information system (LIS; General Laboratory Information Management System), evaluation of usefulness and optimization of MA QC settings was performed using bias detection curves. After this, MA QC settings were incorporated in our LIS for further evaluation and implementation in routine care. Results: Three out of nine parameters (Hb, ESR, and sodium) were excluded from MA QC implementation due to high variation and technical issues in the LIS. For the six remaining parameters, MA QC showed added value to IQC and was therefore implemented in the LIS. For three parameters a direct MA alarm work-up method was set up, including newly developed built-in features in the LIS. For the other parameters, we identified MA utilization beyond real-time monitoring. Conclusions: Implementation of MA QC has added value for our laboratory setting. Additional utilization beyond real-time QC monitoring was identified. We find MA QC especially useful for trend monitoring, detection of small shifts after maintenance and inter-analyzer comparisons.Afdeling Klinische Chemie en Laboratoriumgeneeskunde (AKCL

    Spin alignment of leading K∗(892)0K^{*}(892)^{0} mesons in hadronic Z0Z^0 decays

    Get PDF
    Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K ∗ (892) 0 mesons from hadronic Z 0 decays have been measured over the full range of K ∗ 0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x p values above 0.3, with the matrix element ϱ 00 rising to 0.66 ± 0.11 for x p > 0.7. The values of the real part of the off-diagonal element ϱ 1 - 1 are negative at large x p , with a weighted average value of −0.09 ± 0.03 for x p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the q q system from the Z 0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x p range. The K ∗ 0 fragmentation function has also been measured and the total rate determined to be 0.74 ± 0.02 ± 0.02 K ∗ (892) 0 mesons per hadronic Z 0 decay

    Tissue culture of ornamental cacti

    Full text link

    CLINICAL LABORATORY REDESIGN AIMED AT IMPROVED TURNAROUND TIMES

    No full text
    Afdeling Klinische Chemie en Laboratoriumgeneeskunde (AKCL

    Structured handoff at shift change in a clinical laboratory increases patient safety

    No full text
    Afdeling Klinische Chemie en Laboratoriumgeneeskunde (AKCL

    [Chronic kidney damage guidelines revision]

    No full text
    Item does not contain fulltex
    • 

    corecore