2,019 research outputs found
Genome-wide association studies in kidney diseases: Quo Vadis
A genome-wide association (GWA) study is a genetic epidemiology approach designed to scan genetic variation across the entire human genome in order to identify genetic associations with phenotypic traits as well as the presence or absence of a disease. Hundreds of thousands of single-nucleotide polymorphisms (SNPs), the most common form of genetic variant, serve as markers. SNPs are assayed and related to diseases or health-related conditions applying bioinformatics algorithms. This has become feasible thanks to the recent technological improvements in the so-called high-throughput technologies. The analysis identifies regions (loci) with statistically significant differences in allele or genotype frequencies between cases and controls and so the variations are said to be ‘associated’ with the diseas
DEVELOPMENT AND VALIDATION OF A SYSTEM FOR POLING FORCE MEASUREMENT IN CROSS-COUNTRY SKIING AND NORDIC WALKING
The purpose of this study was to describe and validate a force transducer system specifically designed to measure the force exerted through the poles in cross-country skiing and Nordic walking. It is constituted by a custom built load cell and by a mounting system that allow to minimise cross talk effects. The system is applicable to standard carbon racing shafts to ensure the standard stiffness of the pole. The reliability of the system has been tested performing different static and dynamic tests. The comparison with the reference load cell has shown a good measurement linearity in the range of typical values for poling propulsion and a sensitivity only to the force axially applied to the shaft. The test performed on a 2D platform and with a motion capture system for the measurement of pole inclination, demonstrated the possibility to obtain a reliable measure of the vertical, longitudinal and lateral components of the force exerted by the subject. The accuracy, the portability of the system and their applicability to different shafts allow evaluation of poling action in both laboratory and field conditions, providing important information in cross-country skiing and Nordic walking biomechanical research
A Narrative Review on C3 Glomerulopathy: A Rare Renal Disease
In April 2012, a group of nephrologists organized a consensus conference in Cambridge (UK) on type II membranoproliferative glomerulonephritis and decided to use a new terminology, "C3 glomerulopathy" (C3 GP). Further knowledge on the complement system and on kidney biopsy contributed toward distinguishing this disease into three subgroups: dense deposit disease (DDD), C3 glomerulonephritis (C3 GN), and the CFHR5 nephropathy. The persistent presence of microhematuria with or without light or heavy proteinuria after an infection episode suggests the potential onset of C3 GP. These nephritides are characterized by abnormal activation of the complement alternative pathway, abnormal deposition of C3 in the glomeruli, and progression of renal damage to end-stage kidney disease. The diagnosis is based on studying the complement system, relative genetics, and kidney biopsies. The treatment gap derives from the absence of a robust understanding of their natural outcome. Therefore, a specific treatment for the different types of C3 GP has not been established. Recommendations have been obtained from case series and observational studies because no randomized clinical trials have been conducted. Current treatment is based on corticosteroids and antiproliferative drugs (cyclophosphamide, mycophenolate mofetil), monoclonal antibodies (rituximab) or complement inhibitors (eculizumab). In some cases, it is suggested to include sessions of plasma exchange
Dzyaloshinskii-Moriya interaction and Hall effects in the skyrmion phase of MnFeGe alloys
We carry out density functional theory calculations which demonstrate that
the electron dynamics in the skyrmion phase of Fe-rich MnFeGe
alloys is governed by Berry phase physics. We observe that the magnitude of the
Dzyaloshinskii-Moriya interaction, directly related to the mixed space-momentum
Berry phases, changes sign and magnitude with concentration in direct
correlation with the data of Shibata {\it et al.}, Nature Nanotech. {\bf 8},
723 (2013). The computed anomalous and topological Hall effects in FeGe are
also in good agreement with available experiments. We further develop a simple
tight-binding model able to explain these findings. Finally, we show that the
adiabatic Berry phase picture is violated in the Mn-rich limit of the alloys.Comment: 5 page
Placement of IoT Microservices in Fog Computing Systems: A Comparison of Heuristics
In the last few years, fog computing has been recognized as a promising approach to support modern IoT applications based on microservices. The main characteristic of this application involve the presence of geographically distributed sensors or mobile end users acting as sources of data. Relying on a cloud computing approach may not represent the most suitable solution in these scenario due to the non-negligible latency between data sources and distant cloud data centers, which may represent an issue in cases involving real-time and latency-sensitive IoT applications. Placing certain tasks, such as preprocessing or data aggregation, in a layer of fog nodes close to sensors or end users may help to decrease the response time of IoT applications as well as the traffic towards the cloud data centers. However, the fog scenario is characterized by a much more complex and heterogeneous infrastructure compared to a cloud data center, where the computing nodes and the inter-node connecting are more homogeneous. As a consequence, the the problem of efficiently placing microservices over distributed fog nodes requires novel and efficient solutions. In this paper, we address this issue by proposing and comparing different heuristics for placing the application microservices over the nodes of a fog infrastructure. We test the performance of the proposed heuristics and their ability to minimize application response times and satisfy the Service Level Agreement across a wide set of operating conditions in order to understand which approach is performs the best depending on the IoT application scenario
Alterations of Neuromuscular Function after the World's Most Challenging Mountain Ultra-Marathon.
We investigated the physiological consequences of the most challenging mountain ultra-marathon (MUM) in the world: a 330-km trail run with 24000 m of positive and negative elevation change. Neuromuscular fatigue (NMF) was assessed before (Pre-), during (Mid-) and after (Post-) the MUM in experienced ultra-marathon runners (n = 15; finish time = 122.43 hours ±17.21 hours) and in Pre- and Post- in a control group with a similar level of sleep deprivation (n = 8). Blood markers of muscle inflammation and damage were analyzed at Pre- and Post-. Mean ± SD maximal voluntary contraction force declined significantly at Mid- (-13±17% and -10±16%, P<0.05 for knee extensor, KE, and plantar flexor muscles, PF, respectively), and further decreased at Post- (-24±13% and -26±19%, P<0.01) with alteration of the central activation ratio (-24±24% and -28±34% between Pre- and Post-, P<0.05) in runners whereas these parameters did not change in the control group. Peripheral NMF markers such as 100 Hz doublet (KE: -18±18% and PF: -20±15%, P<0.01) and peak twitch (KE: -33±12%, P<0.001 and PF: -19±14%, P<0.01) were also altered in runners but not in controls. Post-MUM blood concentrations of creatine kinase (3719±3045 Ul·(1)), lactate dehydrogenase (1145±511 UI·L(-1)), C-Reactive Protein (13.1±7.5 mg·L(-1)) and myoglobin (449.3±338.2 µg·L(-1)) were higher (P<0.001) than at Pre- in runners but not in controls. Our findings revealed less neuromuscular fatigue, muscle damage and inflammation than in shorter MUMs. In conclusion, paradoxically, such extreme exercise seems to induce a relative muscle preservation process due likely to a protective anticipatory pacing strategy during the first half of MUM and sleep deprivation in the second half
The increase in hydric volume is associated to contractile impairment in the calf after the world's most extreme mountain ultra-marathon.
BACKGROUND: Studies have recently focused on the effect of running a mountain ultra-marathon (MUM) and their results show muscular inflammation, damage and force loss. However, the link between peripheral oedema and muscle force loss is not really established. We tested the hypothesis that, after a MUM, lower leg muscles' swelling could be associated with muscle force loss. The knee extensor (KE) and the plantar flexor (PF) muscles' contractile function was measured by supramaximal electrical stimulations, potentiated low- and high-frequency doublets (PS10 and PS100) of the KE and the PF were measured by transcutaneous electrical nerve stimulation and bioimpedance was used to assess body composition in the runners (n = 11) before (Pre) and after (Post) the MUM and compared with the controls (n = 8).
RESULTS: The maximal voluntary contraction of the KE and the PF significantly decreased by 20 % Post-MUM in the runners. Hydration of the non-fat mass (NF-Hyd) and extracellular water volume (Ve) were increased by 12 % Post-MUM (p < 0.001) in the runners. Calf circumference (+2 %, p < 0.05) was also increased. Significant relationships were found for percentage increases in Ve and NF-Hyd with percentage decrease in PS10 of the PF (r = -0.68 and r = -0.70, p < 0.05) and with percentage increase of calf circumference (r = 0.72 and r = 0.73, p < 0.05) in the runners.
CONCLUSIONS: The present study suggests that increases in circumference and in hydric volume are associated to contractile impairment in the calf in ultra-marathon runners
- …