339 research outputs found

    Investigating the cores of fossil systems with Chandra

    Full text link
    We investigate the cores of fossil galaxy groups and clusters (`fossil systems') using archival Chandra data for a sample of 17 fossil systems. We determined the cool-core fraction for fossils via three observable diagnostics, the central cooling time, cuspiness, and concentration parameter. We quantified the dynamical state of the fossils by the X-ray peak/brightest cluster galaxy (BCG), and the X-ray peak/emission weighted centre separations. We studied the X-ray emission coincident with the BCG to detect the presence of potential thermal coronae. A deprojection analysis was performed for z < 0.05 fossils to obtain cooling time and entropy profiles, and to resolve subtle temperature structures. We investigated the Lx-T relation for fossils from the 400d catalogue to see if the scaling relation deviates from that of other groups. Most fossils are identified as cool-core objects via at least two cool-core diagnostics. All fossils have their dominant elliptical galaxy within 50 kpc of the X-ray peak, and most also have the emission weighted centre within that distance. We do not see clear indications of a X-ray corona associated with the BCG unlike that has been observed for some other objects. Fossils do not have universal temperature profiles, with some low-temperature objects lacking features that are expected for ostensibly relaxed objects with a cool-core. The entropy profiles of the z < 0.05 fossil systems can be well-described by a power law model, albeit with indices smaller than 1. The 400d fossils Lx-T relation shows indications of an elevated normalisation with respect to other groups, which seems to persist even after factoring in selection effects.Comment: Accepted for publication in Astronomy and Astrophysic

    ICM cooling, AGN feedback and BCG properties of galaxy groups-Five properties where groups differ from clusters

    Full text link
    Using Chandra data for a sample of 26 galaxy groups, we constrained the central cooling times (CCTs) of the ICM and classified the groups as strong cool-core (SCC), weak cool-core (WCC) and non-cool-core (NCC) based on their CCTs. The total radio luminosity of the brightest cluster galaxy (BCG) was obtained using radio catalog data and literature, which was compared to the CCT to understand the link between gas cooling and radio output. We determined K-band luminosities of the BCG with 2MASS data, and used it to constrain the masses of the SMBH, which were then compared to the radio output. We also tested for correlations between the BCG luminosity and the overall X-ray luminosity and mass of the group. The observed cool-core/non-cool-core fractions for groups are comparable to those of clusters. However, notable differences are seen. For clusters, all SCCs have a central temperature drop, but for groups, this is not the case as some SCCs have centrally rising temperature profiles. While for the cluster sample, all SCC clusters have a central radio source as opposed to only 45% of the NCCs, for the group sample, all NCC groups have a central radio source as opposed to 77% of the SCC groups. For clusters, there are indications of an anticorrelation trend between radio luminosity and CCT which is absent for the groups. Indications of a trend of radio luminosity with black hole mass observed in SCC clusters is absent for groups. The strong correlation observed between the BCG luminosity and the cluster X-ray luminosity/cluster mass weakens significantly for groups. We conclude that there are important differences between clusters and groups within the ICM cooling/AGN feedback paradigm.Comment: Accepted for publication in Astronomy and Astrophysic

    Development of a high-throughput ex-vivo burn wound model using porcine skin, and its application to evaluate new approaches to control wound infection

    Get PDF
    Biofilm formation in wounds is considered a major barrier to successful treatment, and has been associated with the transition of wounds to a chronic non-healing state. Here, we present a novel laboratory model of wound biofilm formation using ex-vivo porcine skin and a custom burn wound array device. The model supports high-throughput studies of biofilm formation and is compatible with a range of established methods for monitoring bacterial growth, biofilm formation, and gene expression. We demonstrate the use of this model by evaluating the potential for bacteriophage to control biofilm formation by Staphylococcus aureus, and for population density dependant expression of S. aureus virulence factors (regulated by the Accessory Gene Regulator, agr) to signal clinically relevant wound infection. Enumeration of colony forming units and metabolic activity using the XTT assay, confirmed growth of bacteria in wounds and showed a significant reduction in viable cells after phage treatment. Confocal laser scanning microscopy confirmed the growth of biofilms in wounds, and showed phage treatment could significantly reduce the formation of these communities. Evaluation of agr activity by qRT-PCR showed an increase in activity during growth in wound models for most strains. Activation of a prototype infection-responsive dressing designed to provide a visual signal of wound infection, was related to increased agr activity. In all assays, excellent reproducibility was observed between replicates using this mode

    Adipose cells and tissues soften with lipid accumulation while in diabetes adipose tissue stiffens

    Get PDF
    Adipose tissue expansion involves both differentiation of new precursors and size increase of mature adipocytes. While the two processes are well balanced in healthy tissues, obesity and diabetes type II are associated with abnormally enlarged adipocytes and excess lipid accumulation. Previous studies suggested a link between cell stiffness, volume and stem cell differentiation, although in the context of preadipocytes, there have been contradictory results regarding stiffness changes with differentiation. Thus, we set out to quantitatively monitor adipocyte shape and size changes with differentiation and lipid accumulation. We quantified by optical diffraction tomography that differentiating preadipocytes increased their volumes drastically. Atomic force microscopy (AFM)-indentation and -microrheology revealed that during the early phase of differentiation, human preadipocytes became more compliant and more fluid-like, concomitant with ROCK-mediated F-actin remodelling. Adipocytes that had accumulated large lipid droplets were more compliant, and further promoting lipid accumulation led to an even more compliant phenotype. In line with that, high fat diet-induced obesity was associated with more compliant adipose tissue compared to lean animals, both for drosophila fat bodies and murine gonadal adipose tissue. In contrast, adipose tissue of diabetic mice became significantly stiffer as shown not only by AFM but also magnetic resonance elastography. Altogether, we dissect relative contributions of the cytoskeleton and lipid droplets to cell and tissue mechanical changes across different functional states, such as differentiation, nutritional state and disease. Our work therefore sets the basis for future explorations on how tissue mechanical changes influence the behaviour of mechanosensitive tissue-resident cells in metabolic disorders

    Seed collection data encompassing half of the vascular flora of the pannonian ecoregion stored by the pannon seed bank

    Get PDF
    Seed bank collections have multiple benefits: store genetic material for conservation and research, and their data can also provide valuable scientific information. The Pannon Seed Bank was established during an EU LIFE+ project between 2010 and 2014 with the target to collect and store seeds of approx. 50% of the wild native vascular flora of the Pannonian Biogeographic Region, seed accessions of at least 800 storable species. This task was fully achieved by the end of the project, as altogether 1,853 seed accessions of 910 species are stored. The aim of the present paper is to provide access to the collection data and metadata of the Pannon Seed Bank as it was completed by the end of the project. The collection campaign involved about 40 experts and covered the whole country. Collection and storing applied standard methodology, based on the ENSCONET project. The collection data published in this paper can be used manifold. Geographical data on species occurrences are major input for nature conservation and research. Seed collection date is valuable for ecological studies of phytophagous insects, frugivorous birds and mammals, etc. The database can be partner to international databases (like GBIF) or research infrastructures (e.g. LifeWatch). Hopefully, this data paper will contribute to further motivate the development of native seed collections and their use for conservation and research in Hungary. © 2016 Akadémiai Kiadó, Budapest

    Immunogenicity of a Promiscuous T Cell Epitope Peptide Based Conjugate Vaccine against Benzo[a]pyrene: Redirecting Antibodies to the Hapten

    Get PDF
    The prototype polycyclic aromatic hydrocarbon benzo[a]pyrene (B[a]P) is an environmental pollutant and food contaminant of epidemiological importance. To protect against adverse effects of this ubiquitous carcinogen, we developed an immunoprophylactic strategy based on a B[a]P-protein conjugate vaccine to induce B[a]P specific antibodies (Grova et al., Vaccine. 2009;27:4142–51). Here, we investigated in mice the efficacy of B[a]P-peptide conjugates based on promiscuous T cell epitopes (TCE) into further improve this approach. We showed that B[a]P-peptide conjugates induced very different levels of hapten-specific antibodies with variable functional efficacy, depending on the carrier. In some cases peptide carriers induced a more efficient antibody response against B[a]P than tetanus toxoid as a protein carrier, with the capacity to sequester more B[a]P in the blood. Reducing the carrier size to a single TCE can dramatically shift the antibody bias from the carrier to the B[a]P. Conjugates based on the TCE FIGITEL induced the best anti-hapten response and no antibodies against the carrier peptide. Some peptide conjugates increased the selectivity of the antibodies for the activated metabolite 7,8-diol-B[a]P and B[a]P by one or two orders of magnitude. The antibody efficacy was also demonstrated in their ability to sequester B[a]P in the blood and modulate its faecal excretion (15–56%). We further showed that pre-existing immunity to the carrier from which the TCE was derived did not reduce the immunogenicity of the peptide conjugate. In conclusion, we showed that a vaccination against B[a]P using promiscuous TCEs of tetanus toxin as carriers is feasible even in case of a pre-existing immunity to the toxoid and that some TCE epitopes dramatically redirect the antibody response to the hapten. Further studies to demonstrate a long-term protection of an immunoprophylactic immunisation against B[a]P are warranted

    Structural Insights into Viral Determinants of Nematode Mediated Grapevine fanleaf virus Transmission

    Get PDF
    Many animal and plant viruses rely on vectors for their transmission from host to host. Grapevine fanleaf virus (GFLV), a picorna-like virus from plants, is transmitted specifically by the ectoparasitic nematode Xiphinema index. The icosahedral capsid of GFLV, which consists of 60 identical coat protein subunits (CP), carries the determinants of this specificity. Here, we provide novel insight into GFLV transmission by nematodes through a comparative structural and functional analysis of two GFLV variants. We isolated a mutant GFLV strain (GFLV-TD) poorly transmissible by nematodes, and showed that the transmission defect is due to a glycine to aspartate mutation at position 297 (Gly297Asp) in the CP. We next determined the crystal structures of the wild-type GFLV strain F13 at 3.0 Å and of GFLV-TD at 2.7 Å resolution. The Gly297Asp mutation mapped to an exposed loop at the outer surface of the capsid and did not affect the conformation of the assembled capsid, nor of individual CP molecules. The loop is part of a positively charged pocket that includes a previously identified determinant of transmission. We propose that this pocket is a ligand-binding site with essential function in GFLV transmission by X. index. Our data suggest that perturbation of the electrostatic landscape of this pocket affects the interaction of the virion with specific receptors of the nematode's feeding apparatus, and thereby severely diminishes its transmission efficiency. These data provide a first structural insight into the interactions between a plant virus and a nematode vector

    New measurements of thousand-seed weights of species in the Pannonian flora

    Get PDF
    For understanding local and regional seed dispersal and plant establishment processes and for considering the ecotypes and other forms of specific variability, hard data of locally or regionally measured traits are necessary. We provided newly measured seed weight data of 193 taxa, out of which 24 taxa had not been represented in the SID, LEDA or BiolFlor databases. Our new measurements and formerly published data of locally collected seed weight records together covers over 70% of the Pannonian flora. However, there is still a considerable lack in seed weight data of taxonomically problematic genera, even though they are represented in the Pannonian flora with a relatively high number of species and/or subspecies (e.g. Sorbus, Rosa, Rubus, Crataegus and Hieracium). Our regional database contains very sporadic data on aquatic plants (including also numerous invasive species reported from Hungary and neighbouring countries) and some rare weeds distributed in the southwestern part of the country. These facts indicate the necessity of further seed collection and measurements

    Structural diversity of biologically interesting datasets: a scaffold analysis approach

    Get PDF
    ABSTRACT:The recent public availability of the human metabolome and natural product datasets has revitalized "metabolite-likeness" and "natural product-likeness" as a drug design concept to design lead libraries targeting specific pathways. Many reports have analyzed the physicochemical property space of biologically important datasets, with only a few comprehensively characterizing the scaffold diversity in public datasets of biological interest. With large collections of high quality public data currently available, we carried out a comparative analysis of current day leads with other biologically relevant datasets.In this study, we note a two-fold enrichment of metabolite scaffolds in drug dataset (42%) as compared to currently used lead libraries (23%). We also note that only a small percentage (5%) of natural product scaffolds space is shared by the lead dataset. We have identified specific scaffolds that are present in metabolites and natural products, with close counterparts in the drugs, but are missing in the lead dataset. To determine the distribution of compounds in physicochemical property space we analyzed the molecular polar surface area, the molecular solubility, the number of rings and the number of rotatable bonds in addition to four well-known Lipinski properties. Here, we note that, with only few exceptions, most of the drugs follow Lipinski's rule. The average values of the molecular polar surface area and the molecular solubility in metabolites is the highest while the number of rings is the lowest. In addition, we note that natural products contain the maximum number of rings and the rotatable bonds than any other dataset under consideration.Currently used lead libraries make little use of the metabolites and natural products scaffold space. We believe that metabolites and natural products are recognized by at least one protein in the biosphere therefore, sampling the fragment and scaffold space of these compounds, along with the knowledge of distribution in physicochemical property space, can result in better lead libraries. Hence, we recommend the greater use of metabolites and natural products while designing lead libraries. Nevertheless, metabolites have a limited distribution in chemical space that limits the usage of metabolites in library design.14 page(s
    corecore