131 research outputs found

    The War on Terror

    Get PDF
    Presents comments (from the EPIIC Symposium at Tufts University, February 2004) concerning the war on terror; concern on the problem about terrorism; elaboration on the claim that the world is not in a global war on terror; and problems of the use and abuse of the word terrorism

    Identifying and Improving Knowledge Deficits of Emergency Airway Management of Tracheotomy and Laryngectomy Patients: A Pilot Patient Safety Initiative

    Get PDF
    Objectives. To evaluate the knowledge base of hospital staff regarding emergent airway management of tracheotomy and laryngectomy patients, and the impact of the introduction of a bedside airway form. Methods. Cross-sectional surveys of physicians, nurses, and respiratory therapists at a tertiary care hospital prior to and 24 months after introduction of a bedside Emergency Airway Access (EAA) form. Results. Pre- and postintervention surveys revealed several knowledge deficits. Preintervention, 37% of medical internists and 19% overall did not know that laryngectomy patients cannot be orally ventilated, and 67% of internists could not identify the purpose of stay sutures in recently created tracheotomies. Postintervention, these numbers improved for all groups. Furthermore, 80% of respiratory therapists reported encountering the EAA form in an emergent situation and found it useful. Conclusion. A knowledge deficit is identified in caregivers expected to provide emergency management of patients with airway anatomy altered by subspecialty surgeons. Safety initiatives such as the EAA form may improve knowledge among providers

    Hamster and Murine Models of Severe Destructive Lyme Arthritis

    Get PDF
    Arthritis is a frequent complication of infection in humans with Borrelia burgdorferi. Weeks to months following the onset of Lyme borreliosis, a histopathological reaction characteristic of synovitis including bone, joint, muscle, or tendon pain may occur. A subpopulation of patients may progress to a chronic, debilitating arthritis months to years after infection which has been classified as severe destructive Lyme arthritis. This arthritis involves focal bone erosion and destruction of articular cartilage. Hamsters and mice are animal models that have been utilized to study articular manifestations of Lyme borreliosis. Infection of immunocompetent LSH hamsters or C3H mice results in a transient synovitis. However, severe destructive Lyme arthritis can be induced by infecting irradiated hamsters or mice and immunocompetent Borrelia-vaccinated hamsters, mice, and interferon-gamma- (IFN-γ-) deficient mice with viable B. burgdorferi. The hamster model of severe destructive Lyme arthritis facilitates easy assessment of Lyme borreliosis vaccine preparations for deleterious effects while murine models of severe destructive Lyme arthritis allow for investigation of mechanisms of immunopathology

    PEX14 binding to Arabidopsis PEX5 has differential effects on PTS1 and PTS2 cargo occupancy of the receptor

    Get PDF
    PEX5 acts as a cycling receptor for import of PTS1 proteins into peroxisomes and as a co-receptor for PEX7, the PTS2 receptor, but the mechanism of cargo unloading has remained obscure. Using recombinant protein domains we show PEX5 binding to the PEX14N-terminal domain (PEX14N) has no effect on the affinity of PEX5 for a PTS1 containing peptide. PEX5 can form a complex containing both recombinant PTS1 cargo and endogenous PEX7-thiolase simultaneously but isolation of the complex via the PEX14 construct resulted in an absence of thiolase, suggesting a possible role for PEX14 in the unloading of PTS2 cargos

    Characterization of Clinically-Attenuated Burkholderia mallei by Whole Genome Sequencing: Candidate Strain for Exclusion from Select Agent Lists

    Get PDF
    is an understudied biothreat agent responsible for glanders which can be lethal in humans and animals. Research with this pathogen has been hampered in part by constraints of Select Agent regulations for safety reasons. Whole genomic sequencing (WGS) is an apt approach to characterize newly discovered or poorly understood microbial pathogens. genome. Therefore, the strain by itself is unlikely to revert naturally to its virulent phenotype. There were other genes present in one strain and not the other and vice-versa. was both avirulent in the natural host ponies, and did not possess T3SS associated genes may be fortuitous to advance biodefense research. The deleted virulence-essential T3SS is not likely to be re-acquired naturally. These findings may provide a basis for exclusion of SAVP1 from the Select Agent regulation or at least discussion of what else would be required for exclusion. This exclusion could accelerate research by investigators not possessing BSL-3 facilities and facilitate the production of reagents such as antibodies without the restraints of Select Agent regulation

    Complex interactions of cellular players in chronic Graft-versus-Host Disease

    Get PDF
    Chronic Graft-versus-Host Disease is a life-threatening inflammatory condition that affects many patients after allogeneic hematopoietic stem cell transplantation. Although we have made substantial progress in understanding disease pathogenesis and the role of specific immune cell subsets, treatment options are still limited. To date, we lack a global understanding of the interplay between the different cellular players involved, in the affected tissues and at different stages of disease development and progression. In this review we summarize our current knowledge on pathogenic and protective mechanisms elicited by the major involved immune subsets, being T cells, B cells, NK cells and antigen presenting cells, as well as the microbiome, with a special focus on intercellular communication of these cell types via extracellular vesicles as up-and-coming fields in chronic Graft-versus-Host Disease research. Lastly, we discuss the importance of understanding systemic and local aberrant cell communication during disease for defining better biomarkers and therapeutic targets, eventually enabling the design of personalized treatment schemes

    The peroxin PEX14 of Neurospora crassa is essential for the biogenesis of both glyoxysomes and Woronin bodies

    Get PDF
    In the filamentous fungus Neurospora crassa, glyoxysomes and Woronin bodies coexist in the same cell. Because several glyoxysomal matrix proteins and also HEX1, the dominant protein of Woronin bodies, possess typical peroxisomal targeting signals, the question arises as to how protein targeting to these distinct yet related types of microbodies is achieved. Here we analyzed the function of the Neurospora ortholog of PEX14, an essential component of the peroxisomal import machinery. PEX14 interacted with both targeting signal receptors and was localized to glyoxysomes but was virtually absent from Woronin bodies. Nonetheless, a pex14 Delta mutant not only failed to grow on fatty acids because of a defect in glyoxysomal beta-oxidation but also suffered from cytoplasmic bleeding, indicative of a defect in Woronin body-dependent septal pore plugging. Inspection of pex14 Delta mutant hyphae by fluorescence and electron microscopy indeed revealed the absence of Woronin bodies. When these cells were subjected to subcellular fractionation, HEX1 was completely mislocalized to the cytosol. Expression of GFP-HEX1 in wild-type mycelia caused the staining of Woronin bodies and also of glyoxysomes in a targeting signal-dependent manner. Our data support the view that Woronin bodies emerge from glyoxysomes through import of HEX1 and subsequent fission

    Malaria Infections Do Not Compromise Vaccine-Induced Immunity against Tuberculosis in Mice

    Get PDF
    BACKGROUND: Given the considerable geographic overlap in the endemic regions for malaria and tuberculosis, it is probable that co-infections with Mycobacterium tuberculosis and Plasmodium species are prevalent. Thus, it is quite likely that both malaria and TB vaccines may be used in the same populations in endemic areas. While novel vaccines are currently being developed and tested individually against each of these pathogens, the efficacy of these vaccines has not been evaluated in co-infection models. To further assess the effectiveness of these new immunization strategies, we investigated whether co-infection with malaria would impact the anti-tuberculosis protection induced by four different types of TB vaccines in a mouse model of pulmonary tuberculosis. PRINCIPAL FINDINGS: Here we show that the anti-tuberculosis protective immunity induced by four different tuberculosis vaccines was not impacted by a concurrent infection with Plasmodium yoelii NL, a nonlethal form of murine malaria. After an aerogenic challenge with virulent M. tuberculosis, the lung bacterial burdens of vaccinated animals were not statistically different in malaria infected and malaria naïve mice. Multi-parameter flow cytometric analysis showed that the frequency and the median fluorescence intensities (MFI) for specific multifunctional T (MFT) cells expressing IFN-γ, TNF-α, and/or IL-2 were suppressed by the presence of malaria parasites at 2 weeks following the malaria infection but was not affected after parasite clearance at 7 and 10 weeks post-challenge with P. yoelii NL. CONCLUSIONS: Our data indicate that the effectiveness of novel TB vaccines in protecting against tuberculosis was unaffected by a primary malaria co-infection in a mouse model of pulmonary tuberculosis. While the activities of specific MFT cell subsets were reduced at elevated levels of malaria parasitemia, the T cell suppression was short-lived. Our findings have important relevance in developing strategies for the deployment of new TB vaccines in malaria endemic areas
    corecore