102 research outputs found

    Translation of biological and sedimentological point data towards habitat suitability maps of biological communities and EUNIS level 5 maps. Part 2: From habitat suitability maps of biological communities towards EUNIS level 5 maps

    Get PDF
    The full coverage habitat suitability maps of the macrobenthic communities serve as an input to apply the EUNIS classification on the Belgian Continental Shelf and to translate the maps into EUNIS habitat types (EUNIS level 5 maps). The whole analysis was performed within a GIS (Geographic Information System). The habitat suitability maps were classified by means of the natural breaks classification scheme. Two derivative maps were generated, respectively exceeding probabilities of 60% and 70%. Subsequently, the derived habitat suitability maps were translated into EUNIS habitat types. A large proportion of the Belgian shelf is covered and assigned to EUNIS classes. Each defined EUNIS habitat type has a habitat suitability percentage exceeding 60%. So far, only the Macoma balthica community matches within the current EUNIS classification. The other communities do not exactly match classes within the EUNIS classification. As such, only temporary codes are created and those need an expert review. The Habitat model (Degraer et al., in prep.) does not foresee transitional communities; as such they cannot be mapped. Once these are defined, a complete full coverage EUNIS map can be attained

    Recognizing the seafloor’s characteristics using habitat signatures

    Get PDF
    Seafloor images become increasingly available, both derived from video or photographs and from acoustic remote sensing. Very-high resolution acoustic imagery has indeed the potential of depicting a recognisable sign on an image that relates to a physical and biological nature, i.e. its habitat signature. Still, most of this information is stored at institutes or universities and no up-to-date comprehensive compilation is yet available. Moreover, the acoustic imagery often remains hard to interpret; this is mainly because of the multitude of factors influencing the image and the lack of reference material. When an interpreter studies a remote sensing image, he indeed needs to refer to particular textures and patterns that are recognisable on the image and relate that to reality. Ground truthing remains crucial; still comparison with a large number of similar cases is a necessity. In the framework of marine environmental issues this becomes increasingly important and the need for sound interpretations is real. To anticipate on this need, a web-based catalogue of seabed habitat signatures is being built in the framework of the MESH project (Mapping European Seabed Habitats), for both scientists and non-scientists. The catalogue contains a collection of images produced by different remote sensing techniques (acoustic and optically derived images, photographs and video). As such, the results of the different techniques can be compared and can strengthen interpretations in view of seabed assessments. The catalogue has a comprehensive list of metadata per habitat signature, both in terms of its physical and biological environment and the conditions under which the signatures were generated. The web catalogue is easy manageable. Habitats can be searched using their own name or by typing a key word or choosing a EUNIS code or making a query on physical factors. For every habitat one or more significant locations in the Mesh area are chosen and every location displays all the signatures available. Every location is identified by its coordinates (lat., long.) to be easily positioned on the MESH webGIS (http://www.searchmesh.net/webGIS). The signatures are presented as little thumbnails to let the web user have an easy overview. These link to a page where a description of the image, an enlarged image and all technical data referred to it can be found. The catalogue will largely increase the visibility of how the seafloor looks like, but above all it is hoped that it will assist in the interpretation of newly acquired data in view of - 48 - environmental assessments. Any potential contributor to this catalogue is invited to share their images to a wider European community. The web-catalogue is developed at Ifremer (http://www.ifremer.fr/meshmalo/ essai_signatures). RCMG is responsible for the input of imagery related to the Belgian part of the North Sea

    Wagnild and youngs’s resilience scale validation for IS students

    Get PDF
    This paper describes a quantitative study for the validation of the Wagnild and Young's Resilience Scale ® to Information Systems Students. Individual resilience can be described as the person's ability to deal with problems, overcome obstacles, or resist the pressure caused by adverse situations, without entering into rupture. Therefore, resilience can have a significant role in students' education. However, little is known about the determinants that might undermine the resilience level of students, as well as which could affect their mental status and wellbeing, thus requiring new research efforts. This paper shows that Wagnild and Young's Resilience Scale ® is suitable for Information Systems Students: Perseverance, Self-Reliance, Equanimity, Meaningfulness and Existential Aloneness, emerged as main themes from the principal components analysis, as in the original study by Wagnild and Young suggested. Additionally, it is demonstrated that health have influence in the individual resilience.(undefined

    Strengthening the Resilience of Urban Retailers towards Flood Risks - A Case Study in the Riverbank Region of Kaohsiung City

    Get PDF
    [[abstract]]The urban environment is a complex system composed of the human-environment interactions within the physical-environmental system. It is constantly at the risk of the recurrent and prevalent flooding events in densely populated low land neighborhoods. Resilience is crucial to mitigating climate risks; this study ascertained the retail sector as the basic industry in Meinung with the Location Quotient (LQ) analysis; the interactive visualization tools supported and affirmed the retailers' concentration in the area most prone to flood risk. By conducting the semi-structured interviews for 15 key retailers, the study focused on the driver, pressure, state, impact, and response (DPSIR) framework to assess the knowledge, skills, and network capacity attained from climate change scenarios and flooding. The measurement of the level of resilience showed that retailers’ focus on strategic identification of potential weather-related risks and implementation of adaptation plans for each business's provision of services conformed to place-specificity criteria. The results indicated that (1) mal-adaptation of mitigation measures focus only on short-term objectives and overlook long-term and the overall resilience potential; (2) the appropriate tools for resilience strengthening assessment ascertained the perceived vulnerability; the mitigation relies on knowledge, skill and network capacity attained from previous experiences; (3) interactive visual tools provided an accurate mean, evaluation, and implementation of an integrative interface to guide and enhance the process of resilience strengthening; (4) resilience adaptability from local retailers built an effective way to mitigate flood risks. Finally, further research issues are identified with an effective resilience strengthening method against climate change.[[notice]]補正完

    Integrin Signalling

    No full text
    Integrins are receptors presented on most cells. By binding ligand they can generate signalling pathways inside the cell. Those pathways are a linkage to proteins in the cytosol. It is known that tumor cells can survive and proliferate in the absence of a solid support while normal cells need to be bound to ligand. To understand why tumour cells act that way, we first have to know how ligand-binding to integrins affect the cell. This research field includes studies on activation of proteins by integrins and the following protein-protein interactions. The part of the research that I did, focused on the activation of PI3K by integrins and the question whether Ras is included in that pathway. I also studied the conformation changes of the integrins and tried to identify factors which regulate these changes. Known is that Ras can activate PI3K. But we wanted to know if this is a step in the activation of PI3K by integrins. So if this would be a fact then Ras must be activated by integrins. To see if integrins could activate Ras I did a pull down assay. GTP loaded Ras was isolated through its affinity for Raf. Only when Ras is in its activated state then it is GTP loaded, otherwise it is GDP loaded. In the experiment we also compared the β1A and the β1B splice variants. As result we could see that both splice variants probably can activate Ras. By blotting with anti-PI3K antibody we looked if PI3K had bound to Ras but no clear result could be obtained. Integrins presented on blood cells are mostly in the inactive state while adherent cells have integrins which are mostly in the active state. PI3K has been shown, for blood cells, to be involved in the conformation regulation of integrins. Possibly, there is a positive circle that for blood cells just has to be switched on. It could be that the integrins in adherent cells are active because the cells are adhesive. By being adhesive, PI3K is activated. PI3K may then activate the integrins, through which the integrins stay in the active state. This circle could be broken at two points: we could inhibit PI3K or we could make the cells un-adhesive. I analysed this in cell attachment assay and by binding of conformation-specific integrin antibodies in FACScan. From the results we could not find any evidence that the whole idea around the positive circle is correct. Surprisingly we saw that the integrin value at the surface decrease if you add PI3K inhibitor. This could be due to distribute recirculation of integrins from the cytoplasm to the cell surface. β1- and β3-integrins are both widely spread, but no functional difference could be shown already. Previous results suggest that there is a difference between migrations of those two types. To ensure this suggestion I did a wound assay. Hereby I compared the migration of different cell types, with different integrins on their surface and on different ligands
    • …
    corecore