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4 A protocol for classifying ecologically relevant marine landscapes, a statistical 
approach 

_____________________________________________________________________ 
 
Abstract 
 
Mapping ecologically relevant zones in the marine environment has become 
increasingly important. However, biological data are scarce and alternatives are being 
sought in optimal classifications of abiotic variables. The concept of ‘marine 
landscapes’ is based on a hierarchical classification of geological, hydrographic and 
other physical data. However, this approach is subject to many assumptions and 
subjective decisions. 
Here, an objective protocol is being proposed where abiotic variables are subjected to 
a statistical approach, using principal components analysis (PCA) and a cluster 
analysis. The optimal number of clusters is being defined using the Calinski-Harabasz 
criterion. The methodology has been applied on datasets of the Belgian part of the 
North Sea (BPNS), a shallow sandy shelf environment with a sandbank-swale 
topography. 
The BPNS was classified into 8 marine landscapes that represent well the natural 
variability of the seafloor. The internal cluster consistency was validated with a split-
run procedure, with more than 99% correspondence between the validation and the 
original dataset. The ecological relevance of 6 out of the 8 clusters was demonstrated, 
using indicator species analysis. 
The proposed protocol, as exemplified for the BPNS, can easily be applied to other 
areas and provides a strong knowledge basis for environmental protection and 
management of the marine environment. A SWOT-analysis, showing the strengths, 
weaknesses, opportunities and threats of the protocol was performed.  
 
Keywords: marine landscapes, abiotic variables, macrobenthic species, Principal 
Components Analysis, cluster analysis, Belgian part of the North Sea 
 
_____________________________________________________________________ 
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4.1 Introduction 
 
Biodiversity is of utmost importance to maintain the long-term stability of 
ecosystems, certainly with changing environmental conditions, such as global 
warming (Keytsman and Jones 2007). This applies to both terrestrial and marine 
habitats, species or communities, many of which are threatened by the ever-growing 
pressure on their environment.  
Several techniques to map the environment are in place and if we consider predictive 
modelling and classification techniques for habitat mapping, all of them are based on 
the assumption that the biological value of an area is related to its abiotic 
characteristics. Generally, species and communities are linked to their substrate type, 
topographic position and energy regime. The information on the abiotic environment 
is generally more widely available than biological information itself; as such, it is 
aimed at distinguishing ecological landscapes on the basis of specific combinations of 
these abiotic variables.  
Terrestrial examples of classifications of abiotic variables can be found in Fairbanks 
et al. (2000), Jobin et al. (2003), Rosa-Freitas et al. (2007) and Svoray et al. (2007). 
Similar methodologies can be applied to the marine environment. 
In the framework of marine protection or management, available biotic data (e.g. 
absence/presence of benthic organisms) are often patchy and highly variable in nature. 
Moreover, offshore areas are generally devoid of samples. In response, the mapping 
of “marine landscapes” was developed, as a surrogate of biologically driven habitat 
mapping. If reliable, this methodology would facilitate the development of 
management measures for offshore areas in the absence of biological data (obtaining 
biological data in offshore areas is extremely expensive and time consuming). This 
hierarchical abiotic classification was first proposed for Canadian waters by Roff and 
Taylor (2000) and Roff et al. (2003). In this concept, biological data are used only 
passively, as a validation tool afterwards.  
The integration of abiotic datasets (e.g. seabed substrata, depth, slope) that lead to a 
classification of seabed features, can be performed in a Geographic Information 
System (GIS) and is now applied widely (e.g. Golding et al. 2005; Connor et al. 2006; 
and Al-Hamdani and Reker 2007). The advantages are that abiotic parameters and 
processes are relatively easy to observe and monitor. Moreover, they can often be 
correlated with biological species or communities (Zacharias and Roff 2000). Another 
advantage is that the GIS process is quite simple, compared to statistical techniques 
(e.g. clustering as proposed in this study).  
Unfortunately, this approach still lacks objectivity: in several stages of the 
methodology, subjective decisions have to be made: (1) ‘Ecologically relevant abiotic 
variables’ have to be selected as input for the GIS analyses. However, since biological 
data are generally sparse, this selection is not straightforward; (2) the analysis needs 
abiotic variables, classified into ‘relevant classes in terms of biology’. It is very hard 
to define both the relevant class breaks and the number of classes; and (3) the 
‘Queries’ step that combines the predefined classes of the abiotic variables into new 
combinations, being the final marine landscapes. As such, there is a strong need for a 
more objective and repeatable methodology. 
This paper proposes a protocol to increase the objectivity of the marine landscapes 
approach, based on a statistical analysis for the grouping of full coverage abiotic data. 
The performance of a combination of PCA and cluster analysis will be demonstrated.  
The proposed protocol aims for an unsupervised classification of purely abiotic 
variables. The ecological validation is done afterwards, independently from the PCA 
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and the cluster analysis to test the ecological relevance of the marine landscapes. The 
Belgian part of the North Sea (BPNS) is an ideal case study area, because of its 
extensive availability of both abiotic and biotic variables. However, in most cases, 
abiotic datasets will be available and only a few or no biological datasets.  
 
 
4.2 Material and Methods 
 

4.2.1 Study area  
 
The BPNS (3600 km²) is situated on the North-West European Continental Shelf. The 
shelf is relatively shallow and dips gently from 0 to 50 m. The seabed surface is 
characterized by a highly variable topography, with a series of sandbanks and swales. 
The sandbanks can be subdivided into four major groups: the Coastal Banks and the 
Zeeland Banks are quasi-parallel to the coastline, whereas the Flemish Banks and the 
Hinder Banks have a clear offset in relation to the coast (Lanckneus et al. 2001). The 
seabed is sandy; the sand fraction (0.063 - 2 mm) is merely found on the sandbanks, 
whereas coarser sands, gravel (> 2 mm) and higher silt-clay fractions (< 0.063 mm) 
are found also in the swales (Lanckneus et al. 2001). The sandbanks and the swales 
are both covered with ripples and dunes. The height of the dunes commonly ranges 
between 2 and 4 m, though dune heights of up to 11 m are found in the most offshore 
areas.  
Five macrobenthic communities (four subtidal and one intertidal community) are 
discerned within the mobile substrates of the BPNS (Degraer et al. 2003; and Van 
Hoey et al. 2004).  
On the BPNS, various abiotic datasets are widely available (Van Lancker et al. 2007). 
In addition, a large dataset of 741 macrobenthic samples (Marine Biology Section, 
Ugent – Belgium, 2008) can be used for an ecological validation. As such, the BPNS 
is an ideal test area to develop a new classification method and to validate its 
ecological relevance.  
16 abiotic variables are available for the BPNS (Table 4.1). All of them have a 
resolution of 250 m, except maximum Chlorophyl a (Chl a) concentration and 
maximum Total Suspended Matter (TSM) with a resolution of 1000 m. All data grids 
of the abiotic variables were resampled to 54307 pixels with a resolution of 250 m. 
Although other abiotic variables (e.g. salinity, temperature, stratification) could be 
important as well for explaining the presence of benthic species, they were not 
available for this study. Still, the current dataset represents well the abiotic variability. 
In the Discussion Section, this topic is discussed in more detail.  
 

4.2.2 Research strategy 
 
The protocol starts with a PCA for data reduction (step 1). The resulting components 
are then subjected to a hierarchical cluster analysis (step 2) and the cluster centres 
from step 2 are used as starting positions for a K-means partitioning (step 3). In step 4, 
the optimal number of clusters is calculated; in step 5, a validation of the internal 
cluster consistency is performed; and in step 6, a species indicator analysis (INDVAL) 
is done (Dufrêne and Legendre 1997), defining for each cluster a number of 
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significant indicator species and as such offering the possibility for an ecological 
validation of the classification. 
Software used is SPSS version 12 for PCA, ClustanGraphics version 8.03 for the 
hierarchical and K-means clustering, R version 2.5.1 for the calculation of the 
Calinski and Harabasz (1974) indices (called C-H in this paper) and PC-ORD 4.41 
(McCune and Mefford 1999) for the INDVAL analysis.  
 

4.2.3 Step 1: PCA analysis  
 
For data reduction and to avoid multicollinearity (i.e. high degree of linear 
correlation) of the abiotic variables, a PCA was performed (theoretical background 
e.g. in Jongman et al. 1987; Legendre and Legendre 1998). PCA computes a reduced 
set of new, linearly independent variables, called principal components (PCs) that 
account for most of the variance of the original variables. The PCs are a linear 
combination of the original variables. The PCA was based on a correlation matrix, 
implying that the Kaiser-Guttman criterion could be applied (Legendre and Legendre 
1998). This means that PCs with eigenvalues larger than 1 were preserved as 
meaningful components for the analysis. To maximize the independence of each PC, a 
Varimax rotation of the PCs was computed. The PCs were the input variables for the 
cluster analysis.  
Similar applications of PCA for data reduction of abiotic variables are found in 
Cardillo et al. (1999), Fairbanks (2000), Moreda-Piñeiro et al. (2006), and Frontalini 
and Coccioni (2008).  
 

4.2.4 Step 2: Hierarchical cluster analysis based on Ward’s method 
 
To group the pixels with abiotic data on a statistical basis, a hierarchical clustering, 
based on Ward’s (1963) or Orlóci 's (1967) minimum variance method was applied on 
the PCs (theoretical background e.g. in Jongman et al. 1987; Legendre and Legendre 
1998). This method is an agglomerative clustering algorithm that minimizes an 
objective function which is the same “squared error” criterion that is used in 
multivariate analysis of variance and results into clusters with a minimal variance 
between each cluster. At each clustering step, this method finds the pair of objects or 
clusters whose fusion increases as little as possible the sum, over all objects of the 
squared Euclidean distances between objects and cluster centroids (Legendre and 
Legendre 1998). The Euclidean distance is an appropriate model for the relationships 
among abiotic variables (Legendre and Legendre 1998). Applications of Ward’s 
method for the clustering of abiotic variables can be found in Cao et al. (1997) and 
Frontalini and Coccioni (2008).  
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Table 4.1: Abiotic variables as input for the PCA and cluster analysis.  
Abiotic variable Unit Reference or procedure 
Sedimentology  Reference: sedimentological database 

(‘sedisurf@’) hosted at Ghent University, 
Renard Centre of Marine Geology. 

•  Median grain-size of sand 
fraction (63-2000 µm) or ds50 

µm Reference: Verfaillie et al. (2006) 

•  Silt-clay percentage (0-63 µm) % Reference: Van Lancker et al. (2007) 
•  Sand percentage (63-2000 µm) % Reference: Van Lancker et al. (2007) 
•  Gravel percentage (> 2000 µm) % Reference: Van Lancker et al. (2007) 
Topography   
•  Digital terrain model (DTM) of 

bathymetry 
m Reference: Flemish Authorities, Agency for 

Maritime and Coastal Services, Flemish 
Hydrography 

  All other topographic variables are derived 
from the DTM 

•  Slope = a first derivative of the 
DTM 

° Procedure: Evans (1980); Wilson et al. 
(2007) 

Aspect = a first derivative of the DTM 
Indices of northness and eastness 
provide continuous measures (−1 to 
+1) describing orientation of the 
slopes. 
•  Eastness = sin (aspect) 

 
 
 
 
 
/ (no 
unit) 

Procedure: Wilson et al. (2007); Hirzel et 
al. (2002a) 

•  Northness = cos (aspect) /  
•  Rugosity = ratio of the surface 

area to the planar area across the 
neighbourhood of the central pixel 

/ Procedure: Jenness (2002); Lundblad et al. 
(2006); Wilson et al. (2007) 

Bathymetric Position Index (BPI) = 
measure of where a location, with a 
defined elevation, is relative to the 
overall landscape 
•  BPI (large scale) 

 
 
 
/ 

Procedure: Lundblad et al. (2006); Wilson 
et al. (2007) 

•  BPI (small scale) /  
Hydrodynamics   
•  Maximum bottom shear stress = 

frictional force exerted by the flow 
per unit area of the seabed 

N/m² Reference: Management Unit of the North 
Sea Mathematical Models and the Scheldt 
estuary (MUMM) 

•  Maximum current velocity m/s  
Satellite derived variables   
•  Maximum near-surface Chlophyl 

a (Chl a) concentration over a 2-
year period (2003-2004) 

•  Maximum near-surface Total 
Suspended Matter (TSM): 
measure for turbidity over a 2-year 
period (2003-2004) 

mg/
m³ 
 
mg/l 

Reference: MERIS data processed by 
MUMM in the framework of the 
BELCOLOUR-2 project (ESA ENVISAT 
AOID3443) 

•  Distance to coast m Computed in GIS 
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4.2.5 Step 3: K-means partitioning 
 
Although the result of a hierarchical cluster analysis on its own is prone to multiple 
errors, a hierarchical clustering, based on Ward’s method, can generate excellent 
starting positions (i.e. cluster centroids used as cluster seeds) for a K-means 
partitioning (Milligan 1980; Legendre and Legendre 1998; and Wishart 1987). 
Partitioning clustering methods produce clusters in a predefined number of groups 
(K). K-means is the most widely used numerical method for partitioning data 
(examples from the marine environment are found in Legendre et al. (2002); 
Legendre (2003); Preston and Kirlin (2003); Hewitt et al. (2004); and Zharikov et al. 
(2005)). Pixels from clusters are allocated to a cluster in which the distance to its 
centre is minimal. The procedure stops if all pixels have been allocated. A K-means 
procedure exists of 3 steps: the initiation of the starting cluster centres, the allocation 
of pixels to the initial clusters and the re-allocation of pixels to another cluster. The 
starting positions and the allocation of the pixel to the initial clusters were taken from 
the hierarchical clustering, based on Ward’s method. Those pixels are clustered that 
show the smallest increase in the Euclidean Sum of Squares. 
 

4.2.6 Step 4: Number of clusters 
 
The most difficult and most subjective decision in the cluster analysis is the number 
of clusters. Several indices to calculate the optimal number of clusters exist. From a 
simulation study comparing 30 indices, Milligan and Cooper (1985), proposed the C-
H criterion as giving the best results. C-H is the F-statistic of multivariate analysis of 
variance and canonical analysis. F is the ratio of the mean square for the given 
partition, divided by the mean square for the residuals. The number of clusters 
corresponding with the highest C-H value is the optimal solution in the least-squares 
sense. C-H was also used as stopping criterion for cluster analysis in the marine 
environment in Legendre et al. (2002); Hewitt et al. (2004); and Orpin and Kostylev 
(2006).  
 

4.2.7 Step 5: Validation of internal cluster consistency 
 
A cluster analysis automatically allocates each individual to a cluster. To evaluate the 
internal consistency of the cluster composition, a validation with a split-run procedure 
was performed. For this procedure, the cluster analysis was first done for the whole 
dataset. After that, the optimal number of clusters was computed with the C-H 
criterion. Next, the dataset was randomly split into 2 equal validation parts to which 
the cluster analysis was applied with the same number of clusters. Finally, the cluster 
compositions from both validation parts were compared with the original cluster 
composition by calculating the number of differently classified pixels.  
 

4.2.8 Step 6: Indicator species analysis of the clusters 
 
To evaluate whether the obtained clusters have an ecological relevance, a species 
indicator analysis or INDVAL (Dufrêne and Legendre 1997) was performed. This 
method identifies indicator species for each of the clusters: if indicator species are 
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identified then the cluster should have an ecological relevance, whereas if no indicator 
species can be identified, (most probably) the cluster has no ecological significance. 
The index is maximum when all individuals of a species are found in a single group of 
sites and when the species occurs in all sites of that group. The INDVAL index is 
defined as follows: 
 
INDVALij = Aij x Bij x 100 
 
with  Aij = Nindividualsij/Nindividualsi or the mean abundance of species i in the 

sites of group j, compared to all groups in the study. Aij is a measure of 
specificity and is maximum when species i is only present in cluster j.  
Bij = Nsitesij/Nsitesj or the relative frequency of occurrence of species i in the 
sites of group j. Bij is a measure of fidelity and is maximum when species i is 
present in all sites of cluster j. 
 

The index is maximal when all individuals of a species are found in a single group of 
sites and when the species occurs in all sites of that group. The statistical significance 
for the species indicator values is evaluated using a Monte Carlo permutation 
procedure. 1000 random permutations were used for this study. 
Examples of applications of INDVAL to test the ecological relevance of predefined 
clusters can be found in Mouillot et al. (2002); Heino and Mykrä (2006); and Perrin et 
al. (2006). 
 
 
4.3 Results 
 

4.3.1 Step 1: PCA analysis  
 
Retaining only those PCs with eigenvalues larger than 1; PCA resulted in 6 PCs, 
explaining 78.0% of the total variance. The rotated component matrix (Table 4.2) 
shows the factor loads, being the correlations between the rotated PCs and the original 
variables. 
In decreasing order, PC 1 has high loads (r < -0.5 or r > 0.5) for the variables distance 
to coast, DTM, maximum TSM, ds50, maximum Chl a, silt-clay % and gravel %; PC 
2 for maximum bottom shear stress and maximum current velocity; PC 3 for slope 
and rugosity; PC 4 for BPI large scale and BPI small scale; PC 5 for eastness and 
northness; and PC 6 for sand % and gravel %. Gravel % is the only variable that has a 
high load for 2 PCs, meaning that this relationship is not exclusive.  
 

4.3.2 Step 2: Hierarchical cluster analysis based on Ward’s method 
 
The 54307 cases with 6 PC variables were clustered to achieve a hierarchical partition 
tree. This tree is not at all appropriate as end result of the clustering, but the partitions 
are very useful as starting positions for the K-means partitioning.  
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4.3.3 Step 3: K-means partitioning 
 
The cluster centres of the partition tree based on Ward’s method, were used as input 
for the K-means partitioning. Subsequently, new cluster centres based on the K-means 
algorithm were computed forming a cascade from 2 to 20 clusters. Those centres were 
used to compute the C-H criterion.  
 
Table 4.2: Component matrix showing correlations between the Varimax rotated 
PCs and the original variables.  
High factor loads (r < -0.5 or r > 0.5) are indicated in bold. Information of the 
variables can be found in Table 4.1. 
  Principal component 
  1 2 3 4 5 6 
ds50 -0.894 -0.094 0.088 0.052 0.064 0.133 
silt-clay % 0.668 0.467 -0.135 -0.069 -0.079 -0.285 
sand % -0.230 -0.487 0.149 0.098 0.064 0.748 
gravel % -0.514 0.071 -0.069 -0.034 -0.016 -0.665 
DTM 0.932 -0.075 0.028 0.212 -0.048 0.039 
slope -0.054 0.014 0.958 0.031 0.019 0.045 
eastness -0.021 0.041 -0.005 0.004 0.828 0.040 
northness 0.105 -0.027 -0.050 0.000 -0.798 0.046 
rugosity -0.184 0.037 0.909 0.186 0.037 -0.042 
BPI large scale 0.074 0.048 0.170 0.862 -0.001 0.048 
BPI small scale -0.116 0.003 0.023 0.851 0.005 -0.048 
Max. bottom shear 
stress -0.029 0.918 0.040 0.089 0.142 0.032 
max current velocity -0.184 0.912 0.055 -0.005 -0.029 0.021 
max chl a 0.794 -0.133 -0.035 -0.079 -0.028 0.081 
max TSM 0.921 -0.097 -0.151 -0.052 -0.034 -0.009 
distance to coast -0.944 0.091 0.074 0.068 0.043 -0.032 

 

4.3.4 Step 4: Number of clusters and resulting clusters 
 
Applying the C-H criterion (Figure 4.1), an optimum of 8 clusters was found. The 
result of the 8 cluster solution is presented in Figure 4.2 and Table 4.3. The clusters or 
marine landscapes represent well the natural environment and clear relationships with 
the original abiotic variables are visible. 
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Figure 4.1: The number of clusters versus the C-H criterion.  

C-H reaches an optimum for 8 clusters. 

 
Figure 4.2: Belgian part of the North Sea with 8 clusters.  

The location of macrobenthic community samples are plotted for validation. 
Important patterns of the original abiotic variables are clearly visible on the 

map: e.g. high silt-clay % in cluster 1, alternation of sandbanks and flats-
depressions in clusters 2, 3, 4, 5, 6 and 7; patches of gravel and shell fragments in 

cluster 8. 
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Boxplots (Figure 4.3) show the contribution of the original variables against the 
clusters. A clear example is the boxplot representing slope. This variable is 
approximately the same for all of the clusters, except for cluster 7 with higher values.  
 
Table 4.3: The 8 clusters and their characteristics based on the boxplots  
(Figure 4.3).  
Cluster Characteristics 
1 Shallow, high silt-clay percentage, high current velocity, high bottom 

shear stress, turbid, high Chl a concentration 
2 Shallow NW orientated flats and depressions, fine sand, slightly turbid, 

high Chl a concentration 
3 Shallow SE orientated sandbanks, fine to medium sand, slightly turbid, 

high Chl a concentration 
4 Deep NW orientated flats and depressions, medium sand 
5 Deep SE orientated flats and depressions, medium sand 
6 Crests of sandbanks, medium sand 
7 Slopes of sandbanks, medium sand 
8 High percentage of gravel – shell fragments 
 

 
 

 
 

 
Figure 4.3a 
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Figure 4.3b 
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Figure 4.3c 
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Figure 4.3d: Boxplots of clusters (X-axis) against abiotic variables (Y-axis).  

An overview of the abiotic variables and their units is given in Table 4.1. The 
middle line in the box is the median, the lower and upper box boundaries mark 

the first and third quartile. The whiskers are the vertical lines ending in 
horizontal lines at the largest and smallest observed values that are not statistical 

outliers (values more than 1.5 interquartile range). 
 

4.3.5 Step 5: Validation of the internal cluster consistency 
 
The split-run analysis showed very high correlations between the clusters obtained for 
the subsets and the clusters obtained for the whole dataset. Subset 1 contains 27153 
cases, of which 159 have been classified differently as for the complete dataset. 
Subset 2 contains 27154 cases of which 184 have been classified differently. This is 
respectively 99.4 % and 99.3 % correspondence with the complete dataset for subset 1 
and subset 2. The misclassified cases of both subsets were randomly distributed.  
As shown by the split-run procedure, the internal cluster consistency is very good. 
 

4.3.6 Step 6: Indicator species analysis of the clusters 
 
Of the 123 species present in the 741 samples, randomization identified 25 species 
having a significant indicator value (5% level of significance) for 6 of the 8 defined 
clusters (Table 4.4). No indicator species could be found for cluster 3 and 6. This 
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means that both clusters do not show significant ecological differences with the other 
clusters. 
Species with indicator values higher than 20 are Cirratulidae spp. and Macoma 
balthica for cluster 1; Lanice conchilega and Spisula subtruncata for cluster 2; 
Echinocyamus pusillus for cluster 4; Tellina pygmaea, Gastrosaccus spinifer and 
Bathyporeia spp. for cluster 5; and Ophiura spp. for cluster 7. 
 
Table 4.4: Significant indicator species analysis of the defined clusters.  
   Randomised 

INDVAL (%) 
   

species cluster INDVAL (%) Mean  SD p* A (%) B (%) 
Cirratulidae spp. 1 51.4 10.2 4.49 0.001 73 70 
Macoma balthica 1 26.8 4.4 2.37 0.001 67 40 
Glycera alba 1 14.5 5 2.55 0.011 48 30 
Nephtys hombergii 2 19.7 8 2.6 0.005 41 48 
Ensis spp. 2 19.4 7.3 3.35 0.015 65 30 
Lanice conchilega 2 21.3 8.8 3.86 0.016 62 34 
Phyllodoce mucosa / 
Phyllodoce maculata 2 17.7 7.7 3.6 0.026 57 31 
Eumida spp. 2 12.3 5.5 2.87 0.035 57 22 
Donax vittatus 2 9.3 4.4 2.43 0.042 45 21 
Spisula subtruncata 2 23.3 14.1 4.98 0.046 75 31 
Glycera capitata = 
Glycera lapidum 4 17.8 4.2 2.31 0.002 41 44 
Echinocyamus pusillus 4 22.8 3.8 2.45 0.003 59 39 
Branchiostoma 
lanceolatum 4 8.9 2.1 1.56 0.005 73 12 
Pisione remota 4 8 2.2 1.82 0.017 76 11 
Aonides oxycephala 4 10.1 3.4 2.61 0.03 64 16 
Hesionura elongata 4 8.3 4 2.61 0.041 40 21 
Thia scutellata 4 7.1 3.3 2 0.043 31 23 
Tellina pygmaea 5 31.7 3.2 1.96 0.001 60 53 
Gastrosaccus spinifer 5 23.3 7.1 2.77 0.002 35 66 
Bathyporeia spp. 5 23 11.4 4.57 0.022 30 76 
Pisidia longicornis 5 6.7 2.1 1.88 0.028 51 13 
Ophiura spp. 7 25 11.6 5.13 0.019 62 40 
Nephtys cirrosa 7 18.3 13.3 2.41 0.038 20 90 
Aonides 
paucibranchiata 8 8.1 2.8 1.93 0.029 45 18 
Bivalvia spp. 8 6.8 2.6 1.82 0.037 75 9 
p* Statistically significant at the 0.05 level; SD = standard deviation; A = specificity; B = fidelity; 
INDVAL values  higher than 20% are marked in bold; A and B values higher than 50% are 
marked in bold.  
 
 
4.4 Discussion 
 
This paper proposes an objective protocol to define ecologically relevant zones, solely 
on the basis of abiotic datasets. These zones are called ‘marine landscapes’, as they 
show a strong correlation with the abiotic variables and, in particular, the topography.  
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4.4.1 An objective method to define marine landscapes 
 
The classical Marine Landscape methodology, as proposed by Roff and Taylor 
(2000); and Roff et al. (2003); and applied by Golding et al. (2004); Schelfaut (2005); 
Connor et al. (2006); and Al-Hamdani and Reker (2007) is highly subjective because 
of three reasons. First, the selection of ecologically relevant abiotic variables is 
biased. For the present protocol, no selection is necessary as input for a PCA; because 
PCs are constructed as linear combinations of the available, original abiotic variables 
(e.g. Cardillo 1999; and Fairbanks 2000). Secondly, there is a difficulty of classifying 
the selected abiotic variables into relevant classes. In this paper, a solution is proposed 
that abandons the classification and uses the continuous abiotic variables as input for 
the further analysis (e.g. Wilson 2007). Thirdly, the ‘Queries’ step is highly subjective 
because new combinations (the clusters or ‘marine landscapes’) are chosen arbitrarily 
from the predefined classes of the abiotic variables. This can be overcome by 
combining all possible classes, but this would lead rapidly to too many classes (e.g. 6 
variables with 5 classes already means 30 landscapes). As such, this paper uses the C-
H criterion to define a relevant number of clusters to automatically cluster the 
continuous abiotic variables (e.g. Legendre et al. 2002; Hewitt et al. 2004; and Orpin 
and Kostylev 2006).  
With the objective approach proposed in this paper, there are still some decisions to 
be made during the analysis. First, for the cluster analysis, the number of groups has 
to be decided. Out of own physical knowledge of the BPNS, the solution of 8 marine 
landscapes seems to represent well the natural environment and none of the clusters 
seems to be useless. Their relation with the overall environment is clear, which was 
also exemplified by boxplots indicating the contribution of each abiotic variable to the 
clusters (Figure 4.3). The C-index (Hubert and Levin 1976), being a very good 
stopping criterion comparable to C-H (Milligan and Cooper 1985), has been tried as 
stopping criterion on this dataset, but it does not work for large datasets as used for 
this study. Secondly, for the K-means procedure, the Euclidean Sum-of-Squares 
clustering criterion was used as a distance index. As Punj and Stewart (1983) 
demonstrated, the choice of the (dis)similarity or distance index is of minor 
importance, compared to the clustering algorithm.  
 

4.4.2 Abiotic datasets 
 
Degraer et al. (2008) already discussed the many abiotic variables that might explain 
the distribution of macrobenthic communities on the BPNS. For the present study, not 
only typical variables, such as bathymetry and sedimentological information (e.g. Wu 
and Shin 1997; Van Hoey et al. 2004; and Willems et al. 2008) were used, but also 
hydrodynamical data (e.g. Caeiro et al. 2005), turbidity (e.g. Akoumianaki and 
Nicolaidou 2007), topographically derived features such as BPI (e.g. Lundblad et al. 
2006; Wilson et al. 2007), eastness and northness (e.g. Hirzel et al. 2002a; Wilson et 
al. 2007) and rugosity (e.g. Jenness 2002; Lundblad et al. 2006; Wilson et al. 2007). 
Still, other abiotic variables could be used, such as curvature (e.g. Wilson et al. 2007), 
primary productivity (e.g. Smith et al. 2006), organic matter (e.g. Verneaux et al. 
2004), salinity (e.g. Al-Hamdani and Reker 2007), temperature (e.g. Connor et al. 
2006) and stratification (e.g. Connor et al. 2006). In addition, Guisan and Thuiller 
(2005); Baptist et al. (2006) and Wilson et al. (2007) stress the importance of spatial 
scales for predicting the distribution of fauna.  
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The more abiotic variables become available as input for habitat mapping, the more 
potential habitats can be classified and potentially new habitats could be identified. 
However, the relevance of additional classes may not always be clear. It remains 
important that the variables can be measured or obtained easily and that a sound 
evaluation of the end products is guaranteed. Another difficulty is the spatial and 
temporal bias of both biotic and abiotic datasets. Most of the ground-truth data are 
taken close to the coast and harbours and are strongly biased towards topographic 
locations. On the BPNS, most samples were taken on the sandbanks, because of their 
economic potential (e.g. aggregate extraction). Here, the samples are often closely 
spaced, while other locations are mostly under-sampled. In the most offshore areas, 
samples are commonly scarce. Apart from the spatial complexity, the samples are also 
subject to a temporal bias. Gregr and Bodtker (2007) stress the importance of the 
temporal dynamics (i.e. seasonal variations) for abiotic variables.  
In a short time-span, extreme events, such as storms can cause completely different 
situations of e.g. current regime or suspended matter, causing differences in species 
composition. Therefore, for the present study, it was decided to work with maximal 
values of abiotic variables, as those datasets are best suited to represent extreme 
events (maximum bottom shear stress, maximum current velocity, maximum 
Chlorophyl a and maximum total suspended matter; cfr. Table 4.1).  
On the BPNS, sedimentological samples have been taken from 1976 until now, whilst 
biological samples are all from a more recent date. Most of the datasets do not cover 
the same period. Some abiotic datasets are the result of a compilation over many years 
(e.g. map of ds50 and silt-clay %), whereas others represent a very limited time span 
(e.g. maximum bottom shear stress; based on data from a spring-neap tidal cycle, 14.8 
days). In an ideal situation, all abiotic and biotic datasets would cover the same spatial 
and temporal scale.  
Misleading conclusions can be drawn because of the inappropriate use of some 
datasets. Sedimentological samples are very suitable to define the sand and to a lesser 
extent the silt-clay fraction. The gravel fraction (> 2 mm) might be underestimated 
when grab samples only have been obtained. Gravel can be detected with acoustical 
classification techniques, but only minor parts of the BPNS have been covered until 
known (Van Lancker et al. 2007). However, gravel is a part of very interesting 
habitats with generally high biodiversities (e.g. relation of gravel occurrence with 
Ostrea edulis and Clupea harengus (Houziaux et al. 2007a; and Houziaux et al. 
2007b); with scallops (Kostylev et al. 2003); and with algae and Crepidula fornicata 
(Brown et al. 2002)).  
Therefore, marine landscape mapping ‘suggests’ only possible ecologically 
interesting areas, and its predictive power remains dependent on the nature, quality 
and stability of the abiotic variables. 
 

4.4.3 Ecological relevance 
 
The BPNS is an ideal test case for the proposed methodology as both abiotic and 
biological datasets are widely available. Since the marine landscapes in the present 
study are rather limited in surface area, they might be considered as habitats and the 
results might be similar than those that would be obtained with habitat mapping. 
However, the difference between them is that he Marine Landscape approach is top-
down and the habitat mapping approach is bottom-up. This means that for the top-
down approach biotic data are used at the end of the process for the validation (or, in 
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the case of no samples, not at all for some marine landscapes). For the bottom-up 
approach, abiotic and biotic data are used from the beginning of the process to create 
a habitat model, centering around the relationships between both (e.g. Willems et al. 
2008). Still, for the top-down approach, abiotic data have to be selected that are at 
least assumed to have an ecological relevance. This knowledge may be derived from 
literature or expert judgement, but also from a visual inspection at the beginning of 
the process, comparing possible abiotic input layers with the number of biotic 
samples. In this paper, no prior selection of abiotic variables has to be done, as all of 
them are used as PCs.  
The ecological validation for this study was based on an indicator species analysis, 
defining significant indicator species for the predefined clusters. The results showed 
that for each cluster, except for cluster 3 and 6, significant indicator species could be 
found.  
As such, the clusters are a good proxy for biological predictions. Still, it must be clear 
that it is not the absolute aim of the marine landscape mapping to predict the biology 
as such, therefore other and better predictive modelling techniques exist (e.g. Guisan 
and Zimmermann 2000). Marine landscapes give an indication about the biology, 
derived solely from abiotic datasets, and offer a valuable in alternative in areas where 
biological data are scarce or absent. 
There seems to be a discrepancy between the number of landscapes (8) and the 
number of clusters with significant indicator species (6): if a landscape is ecologically 
meaningful, then this landscape should be populated by specific biota or, in other 
words, every landscape should be uniquely linked to the biology. Although we might 
conclude from this discrepancy that several identified marine landscapes have no 
ecological meaning, we might also explain this by the potential lack of sufficiently 
detailed information on the marine biota, used to validate the marine landscapes. In 
conclusion, the level of detail of our current knowledge on the macrobenthos might be 
insufficient for an unbiased validation of the marine landscapes. If such detailed 
information would be available, then these data could help to further unravel the 
ecological meaning of all eight marine landscapes. At the same time, one will never 
be able to completely explain the occurrence of certain species and communities on 
the basis of the abiotic environment alone. A biological or an abiotic point of view 
will never result in exact the same abstractions of the marine seabed, because both 
approaches are a different way of looking at the same thing.  
 

4.4.4 SWOT analysis 
 
A critical evaluation of the protocol to map marine landscapes is performed using a 
SWOT analysis (strengths, weaknesses, opportunities and threats). 
The main strengths of the protocol are the following: 

- the possibility to use all available abiotic variables as input for PCA, a 
technique that eliminates all redundancy of correlating data; 

- the unnecessity to classify the abiotic variables before the clustering and thus 
the possibility to use continuous abiotic variables as input for the clustering; 

- the use of the C-H criterion to help defining the optimal number of clusters of 
marine landscapes. 

- the proposed protocol is repeatable and objective; it forms a good alternative 
for the currently used methodologies which imply subjective decisions to be 
made.  
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The main weaknesses are: 
- the added value of the defined clusters or marine landscapes map is dependent 

on the availability of relevant abiotic datasets; 
- PCA, cluster analysis and INDVAL requires statistical insight and knowledge 

of the user. 
A possible opportunity is: 

- the application of this protocol for mapping marine landscapes on an 
international scale and for a larger area than the BPNS (e.g. as contribution to 
the European Atlas of the Seas in the context of the future European Marine 
Strategy Framework Directive). 

A possible threat is: 
- for a mapping exercise over a large area, abiotic and biotic datasets, based on 

different techniques and with different accuracies will be merged, causing an 
inpredictable error propagation.  

Summarizing, the protocol creates interesting opportunities for a mapping exercise on 
a European scale, but important considerations have to be made about the accuracy of 
the final result, when datasets of different qualities and origins are used. Foster-Smith 
et al. (2007b) describe how the accuracy and confidence of marine habitat maps can 
be assessed, based on a multi-criteria approach. 
 
 
4.5 Conclusion 
 
This paper proposes an objective statistical method for the definition of ecologically 
relevant marine landscapes. The zones represent well the natural environment and 
there are clear relationships with the original abiotic variables and the occurrence of 
macrobenthic species. The methodology is straightforward and allows an easy 
application to other areas. Marine spatial planning, environmental protection and 
management of marine zones can benefit from the definition of ecologically relevant 
marine landscapes (e.g. definition of most important ecological zones, to be protected 
from dredging and dumping activities or aggregate extraction).   
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