90 research outputs found

    Human and bovine respiratory syncytial virus vaccine research and development

    Get PDF
    Human (HRSV) and bovine (BRSV) respiratory syncytial viruses (RSV) are two closely related viruses, which are the most important causative agents of respiratory tract infections of young children and calves, respectively. BRSV vaccines have been available for nearly 2 decades. They probably have reduced the prevalence of RSV infection but their efficacy needs improvement. In contrast, despite decades of research, there is no currently licensed vaccine for the prevention of HRSV disease. Development of a HRSV vaccine for infants has been hindered by the lack of a relevant animal model that develops disease, the need to immunize immunologically immature young infants, the difficulty for live vaccines to find the right balance between attenuation and immunogenicity, and the risk of vaccine-associated disease. During the past 15 years, intensive research into a HRSV vaccine has yielded vaccine candidates, which have been evaluated in animal models and, for some of them, in clinical trials in humans. Recent formulations have focused on subunit vaccines with specific CD4+ Th-1 immune response-activating adjuvants and on genetically engineered live attenuated vaccines. It is likely that different HRSV vaccines and/or combinations of vaccines used sequentially will be needed for the various populations at risk. This review discusses the recent advances in RSV vaccine development

    In vivo evidence for quasispecies distributions in the bovine respiratory syncytial virus genome

    Get PDF
    We analyzed the genetic evolution of bovine respiratory syncytial virus (BRSV) isolate W2-00131, from its isolation in bovine turbinate (BT) cells to its inoculation in calves. Results showed that the BRSV genomic region encoding the highly variable glycoprotein G remains genetically stable after virus isolation and over 10 serial infections in BT cells, as well as following experimental inoculation in calves. This remarkable genetic stability led us to examine the mutant spectrum of several populations derived from this field isolate. Sequence analysis of molecular clones revealed an important genetic heterogeneity in G coding region of each population, with mutation frequencies ranging from 6.8 to 10.1 10-4 substitutions/nucleotide. The non-synonymous mutations of the mutant spectrum mapped preferentially within the two variable antigenic regions of the ectodomain or close to the highly conserved domain. These results suggest that RSV populations may evolve as complex and dynamic mutant swarms, despite apparent genetic stability

    Advanced survival models for risk-factor analysis in scrapie

    Get PDF
    Because of the confounding effects of long incubation duration and flock management, accurate epidemiological studies of scrapie outbreaks are difficult to carry out. In this study, 641 Manech red-faced sheep from six scrapie-affected field flocks in PyrĂ©nĂ©es Atlantiques, France, were monitored for clinical scrapie over a 6–9 year period. Over this period, 170 scrapie clinical cases were recorded and half of the culled animals were submitted for post-mortem transmissible spongiform encephalopathy diagnosis to assess their infectious status. Collected data were analysed using a ‘mixture cure model’ approach, which allowed for the discriminating effect of PrP genotype and flock origin on incidence and incubation period. Simulations were performed to evaluate the applicability of such a statistical model to the collected data. As expected, ARR heterozygote sheep were less at risk of becoming infected than ARQ/ARQ individuals and had a greater age at clinical onset. Conversely, when compared with ARQ/ARQ, the VRQ haplotype was associated with an increased infection risk, but not a shorter incubation period. Considering the flock effect, we observed that a high incidence rate was not associated with shorter incubation periods and that the incubation period could be significantly different in flocks harbouring similar infection risks. These results strongly support the conclusion that other parameters, such as the nature of the agent or flock management, could interfere with epidemiological dynamics of the infection in scrapie-affected flocks

    Clinical, electroretinographic and histomorphometric evaluation of the retina in sheep with natural scrapie

    Get PDF
    Background: The retina is part of the diencephalon in a peripheral location and may be involved in prion diseases. Retinal function and structural changes were assessed in naturally scrapie-affected red face Manech ewes presenting the classical signs of the disease, and clinically healthy age-matched subjects for controls. Ophthalmic examination was done prior to electroretinography (ERG), which was carried out under conditions that allowed photopic and scotopic activities to be assessed. Histomorphometry of the inner and outer retinal layers was performed post-mortem, and retinas were also examined for evidence of abnormal prion protein (PrPSc) accumulation and glial fibrillary acidic protein (GFAP) upregulation as a marker of gliosis. Scrapie status was determined by examination of brain tissue Results: Ocular reflexes and ophthalmoscopy did not reveal any difference between scrapie affected and control animals. Although the light-and dark-adapted ERG responses of both rod-and cone-mediated functions had a similar waveform in scrapie-affected and control sheep, a significant reduction in the amplitude of the ERG a-and b-waves was observed in affected animals compared to controls. These functional alterations were correlated with a substantial loss of cells in the outer nuclear layer (ONL), lengthening and disorganization in photoreceptor segments, and substantial reduction in cellularity and thickness of the inner nuclear layer (INL). The degenerative changes in the INL and ONL were most marked in the central and paracentral areas of the scrapie retinas, and were accompanied in all scrapie retinas by PrPSc deposition in the ganglion cell and synaptic layers. GFAP immunoreactivity was mainly increased in the ganglion cell and inner plexiform layers. Conclusions: No appreciable fundoscopic changes were observed in the scrapie-affected ewes although reproducible changes in retinal function as measured by ERG were observed in these animals. The alterations in the receptoral and post-receptoral pathways corresponded to the degenerative lesions observed in the ONL and INL of the scrapie retinas. The retinal degeneration was associated with prion protein infectivity which presumably spread via the optic nerve

    Paralysing gastroenteritis: disease or syndrome?

    Get PDF
    DĂšs 1986, les gastroentĂ©rites paralysantes (GEP) apparaissent comme une entitĂ© bien dĂ©finie sur le plan clinique dans le syndrome gastroentĂ©ritique nĂ©onatal du veau. L’étude clinique montre la discrĂ©tion des signes diarrhĂ©iques, l’absence de dĂ©shydratation et la prĂ©sence de signes nerveux dominĂ©s par de la parĂ©sie. Les enquĂȘtes microbiologiques font ressortir le rĂŽle particulier de coliba cilles dotĂ©s de marqueurs de pathogĂ©nicitĂ© spĂ©cifiques (CS 31A et ColV). Les examens paracliniques font apparaĂźtre une acidĂłse mĂ©tabolique sanguine avec accumulation d’acide D lactique. Les auteurs dĂ©crivent diffĂ©rentes Ă©tapes afin de dĂ©finir si les GEP sont une maladie ou font partie d’un syndrome gastroen- tĂ©rique plus gĂ©nĂ©ral (veau non dĂ©shydratĂ© et acidosique).Since 1986, paralysing gastroenteritis (PEG) were seen as a well defined clinical entity regarding the gastroenteritis syndrome of the new-born calf. Clinical examination shows slight diarrhoea signs, the absence of dehydratation and the presence of nervous signs amongst which paresis is the most important. Microbiological surveys have shown the particular role or E. Colt with specific pathogencity markers (CS31A and Col V). Laboratory analysis show a metabolic blood acidosis with accumulation of D Lactate. The authors describe the various steps that help defining whether PGE are a disease or if they are part of the gastroenteritis syndrome (non dehydrated, acidosic calf)

    Highly Efficient Prion Transmission by Blood Transfusion

    Get PDF
    It is now clearly established that the transfusion of blood from variant CJD (v-CJD) infected individuals can transmit the disease. Since the number of asymptomatic infected donors remains unresolved, inter-individual v-CJD transmission through blood and blood derived products is a major public health concern. Current risk assessments for transmission of v-CJD by blood and blood derived products by transfusion rely on infectious titers measured in rodent models of Transmissible Spongiform Encephalopathies (TSE) using intra-cerebral (IC) inoculation of blood components. To address the biological relevance of this approach, we compared the efficiency of TSE transmission by blood and blood components when administrated either through transfusion in sheep or by intra-cerebral inoculation (IC) in transgenic mice (tg338) over-expressing ovine PrP. Transfusion of 200 ”L of blood from asymptomatic infected donor sheep transmitted prion disease with 100% efficiency thereby displaying greater virulence than the transfusion of 200 mL of normal blood spiked with brain homogenate material containing 103ID50 as measured by intracerebral inoculation of tg338 mice (ID50 IC in tg338). This was consistent with a whole blood titer greater than 103.6 ID50 IC in tg338 per mL. However, when the same blood samples were assayed by IC inoculation into tg338 the infectious titers were less than 32 ID per mL. Whereas the transfusion of crude plasma to sheep transmitted the disease with limited efficacy, White Blood Cells (WBC) displayed a similar ability to whole blood to infect recipients. Strikingly, fixation of WBC with paraformaldehyde did not affect the infectivity titer as measured in tg338 but dramatically impaired disease transmission by transfusion in sheep. These results demonstrate that TSE transmission by blood transfusion can be highly efficient and that this efficiency is more dependent on the viability of transfused cells than the level of infectivity measured by IC inoculation

    Endocarditis in Cattle Caused by Bartonella bovis

    Get PDF
    This study aimed to determine the role of Bartonella as an endocarditis agent in cattle. Bartonella bovis was identified by PCR, gene sequences analysis, and specific internal transcribed spacer amplicon product size in 2 bovine endocarditis cases with high antibody titers, which demonstrates that B. bovis is a pathogen for cattle

    Prions in Milk from Ewes Incubating Natural Scrapie

    Get PDF
    Since prion infectivity had never been reported in milk, dairy products originating from transmissible spongiform encephalopathy (TSE)-affected ruminant flocks currently enter unrestricted into the animal and human food chain. However, a recently published study brought the first evidence of the presence of prions in mammary secretions from scrapie-affected ewes. Here we report the detection of consistent levels of infectivity in colostrum and milk from sheep incubating natural scrapie, several months prior to clinical onset. Additionally, abnormal PrP was detected, by immunohistochemistry and PET blot, in lacteal ducts and mammary acini. This PrPSc accumulation was detected only in ewes harbouring mammary ectopic lymphoid follicles that developed consequent to Maedi lentivirus infection. However, bioassay revealed that prion infectivity was present in milk and colostrum, not only from ewes with such lympho-proliferative chronic mastitis, but also from those displaying lesion-free mammary glands. In milk and colostrum, infectivity could be recovered in the cellular, cream, and casein-whey fractions. In our samples, using a Tg 338 mouse model, the highest per ml infectious titre measured was found to be equivalent to that contained in 6 ”g of a posterior brain stem from a terminally scrapie-affected ewe. These findings indicate that both colostrum and milk from small ruminants incubating TSE could contribute to the animal TSE transmission process, either directly or through the presence of milk-derived material in animal feedstuffs. It also raises some concern with regard to the risk to humans of TSE exposure associated with milk products from ovine and other TSE-susceptible dairy species

    Atypical/Nor98 Scrapie Infectivity in Sheep Peripheral Tissues

    Get PDF
    Atypical/Nor98 scrapie was first identified in 1998 in Norway. It is now considered as a worldwide disease of small ruminants and currently represents a significant part of the detected transmissible spongiform encephalopathies (TSE) cases in Europe. Atypical/Nor98 scrapie cases were reported in ARR/ARR sheep, which are highly resistant to BSE and other small ruminants TSE agents. The biology and pathogenesis of the Atypical/Nor98 scrapie agent in its natural host is still poorly understood. However, based on the absence of detectable abnormal PrP in peripheral tissues of affected individuals, human and animal exposure risk to this specific TSE agent has been considered low. In this study we demonstrate that infectivity can accumulate, even if no abnormal PrP is detectable, in lymphoid tissues, nerves, and muscles from natural and/or experimental Atypical/Nor98 scrapie cases. Evidence is provided that, in comparison to other TSE agents, samples containing Atypical/Nor98 scrapie infectivity could remain PrPSc negative. This feature will impact detection of Atypical/Nor98 scrapie cases in the field, and highlights the need to review current evaluations of the disease prevalence and potential transmissibility. Finally, an estimate is made of the infectivity loads accumulating in peripheral tissues in both Atypical/Nor98 and classical scrapie cases that currently enter the food chain. The results obtained indicate that dietary exposure risk to small ruminants TSE agents may be higher than commonly believed
    • 

    corecore