26 research outputs found

    Reply to Fischer et al

    Get PDF
    We welcome the correspondence from Fischer and colleagues regarding our recent paper on vocal learning in chimpanzee food grunts [1]. Fischer et al. make two challenges to our paper's conclusions, which we address here

    On the Determinants of Social Capital in Greece Compared to Countries of the European Union

    Full text link

    Intentional gestural signalling amongst red-capped mangabeys (Cercocebus torquatus)

    No full text
    International audienceApes, human's closest living relatives, are renowned for their intentional and highly flexible use of gestural signals In stark contrast, evidence for intentional signalling in monkeys is scant, especially when considering signals produced amongst conspecifics. We present data on the naturally occurring gestural communication amongst captive red-capped mangabeys (Cercocebus torquatus), collected from a total of 17 Individuals living in three different groups at the Station Biologique, Paimpont, France. When applying methods originally established in ape gesture research to assess whether these monkeys used ‘markers of intentionality’ during their gesture production, we found that 24 out of a total of 25 different signal types (including 4 facial expressions and 5 manual gestures) qualified as intentional. They were characterized by sensitivity to the attentional state of recipients, adjustment to audience effects, and goal persistence. Our results reveal that monkey communication is cognitively more complex than previously assumed, and show that the precursors to flexible and intentional communication were already present in the primate lineage around 30 My ago

    Call combinations and compositional processing in wild chimpanzees

    Get PDF
    Through syntax, i.e., the combination of words into larger phrases, language can express a limitless number of messages. Data in great apes, our closest-living relatives, are central to the reconstruction of syntax’s phylogenetic origins, yet are currently lacking. Here, we provide evidence for syntactic-like structuring in chimpanzee communication. Chimpanzees produce “alarm-huus” when surprised and “waa-barks” when potentially recruiting conspecifics during aggression or hunting. Anecdotal data suggested chimpanzees combine these calls specifically when encountering snakes. Using snake presentations, we confirm call combinations are produced when individuals encounter snakes and find that more individuals join the caller after hearing the combination. To test the meaning-bearing nature of the call combination, we use playbacks of artificially-constructed call combinations and both independent calls. Chimpanzees react most strongly to call combinations, showing longer looking responses, compared with both independent calls. We propose the “alarm-huu + waa-bark” represents a compositional syntactic-like structure, where the meaning of the call combination is derived from the meaning of its parts. Our work suggests that compositional structures may not have evolved de novo in the human lineage, but that the cognitive building-blocks facilitating syntax may have been present in our last common ancestor with chimpanzees

    Male blue monkeys alarm call in response to danger experienced by others

    No full text
    Male blue monkeys (Cercopithecus mitis stuhlmanni) of Budongo Forest, Uganda, produce two acoustically distinct alarm calls: hacks to crowned eagles (Stephanoaetus coronatus) and pyows to leopards (Panthera pardus) and a range of other disturbances. In playback experiments, males responded to leopard growls exclusively with a series of pyows and to eagle shrieks predominantly with hacks. Responses to playbacks of these alarm call series matched the responses to the corresponding predators, suggesting that the calls conveyed something about the nature of the threat. When responding to a series of hacks, indicating an eagle, males responded predominately with hacks, but produced significantly more calls if their group members were close to the playback stimulus than far away, regardless of their own position. When responding to a series of pyows, indicating a range of disturbances, males responded with pyows, but call rates were independent of the distance of other group members. The results suggest that males took into account the degree of danger experienced by other group members

    Call combinations and compositional processing in wild chimpanzees

    No full text
    Through syntax, i.e., the combination of words into larger phrases, language can express a limitless number of messages. Data in great apes, our closest-living relatives, are central to the reconstruction of syntax’s phylogenetic origins, yet are currently lacking. Here, we provide evidence for syntactic-like structuring in chimpanzee communication. Chimpanzees produce “alarm-huus” when surprised and “waa-barks” when potentially recruiting conspecifics during aggression or hunting. Anecdotal data suggested chimpanzees combine these calls specifically when encountering snakes. Using snake presentations, we confirm call combinations are produced when individuals encounter snakes and find that more individuals join the caller after hearing the combination. To test the meaning-bearing nature of the call combination, we use playbacks of artificially-constructed call combinations and both independent calls. Chimpanzees react most strongly to call combinations, showing longer looking responses, compared with both independent calls. We propose the “alarm-huu + waa-bark” represents a compositional syntactic-like structure, where the meaning of the call combination is derived from the meaning of its parts. Our work suggests that compositional structures may not have evolved de novo in the human lineage, but that the cognitive building-blocks facilitating syntax may have been present in our last common ancestor with chimpanzees

    Call combinations and compositional processing in wild chimpanzees

    Get PDF
    Abstract Through syntax, i.e., the combination of words into larger phrases, language can express a limitless number of messages. Data in great apes, our closest-living relatives, are central to the reconstruction of syntax’s phylogenetic origins, yet are currently lacking. Here, we provide evidence for syntactic-like structuring in chimpanzee communication. Chimpanzees produce “alarm-huus” when surprised and “waa-barks” when potentially recruiting conspecifics during aggression or hunting. Anecdotal data suggested chimpanzees combine these calls specifically when encountering snakes. Using snake presentations, we confirm call combinations are produced when individuals encounter snakes and find that more individuals join the caller after hearing the combination. To test the meaning-bearing nature of the call combination, we use playbacks of artificially-constructed call combinations and both independent calls. Chimpanzees react most strongly to call combinations, showing longer looking responses, compared with both independent calls. We propose the “alarm-huu + waa-bark” represents a compositional syntactic-like structure, where the meaning of the call combination is derived from the meaning of its parts. Our work suggests that compositional structures may not have evolved de novo in the human lineage, but that the cognitive building-blocks facilitating syntax may have been present in our last common ancestor with chimpanzees

    Vocal learning in the functionally referential food grunts of chimpanzees

    Get PDF
    One standout feature of human language is our ability to reference external objects and events with socially learned symbols, or words. Exploring the phylogenetic origins of this capacity is therefore key to a comprehensive understanding of the evolution of language. While non-human primates can produce vocalizations that refer to external objects in the environment, it is generally accepted that their acoustic structure is fixed and a product of arousal states [1]. Indeed, it has been argued that the apparent lack of flexible control over the structure of referential vocalizations represents a key discontinuity with language [2]. Here, we demonstrate vocal learning in the acoustic structure of referential food grunts in captive chimpanzees. We found that, following the integration of two groups of adult chimpanzees, the acoustic structure of referential food grunts produced for a specific food converged over 3 years. Acoustic convergence arose independently of preference for the food, and social network analyses indicated this only occurred after strong affiliative relationships were established between the original subgroups. We argue that these data represent the first evidence of non-human animals actively modifying and socially learning the structure of a meaningful referential vocalization from conspecifics. Our findings indicate that primate referential call structure is not simply determined by arousal and that the socially learned nature of referential words in humans likely has ancient evolutionary origins
    corecore