418 research outputs found

    Network Inference via the Time-Varying Graphical Lasso

    Full text link
    Many important problems can be modeled as a system of interconnected entities, where each entity is recording time-dependent observations or measurements. In order to spot trends, detect anomalies, and interpret the temporal dynamics of such data, it is essential to understand the relationships between the different entities and how these relationships evolve over time. In this paper, we introduce the time-varying graphical lasso (TVGL), a method of inferring time-varying networks from raw time series data. We cast the problem in terms of estimating a sparse time-varying inverse covariance matrix, which reveals a dynamic network of interdependencies between the entities. Since dynamic network inference is a computationally expensive task, we derive a scalable message-passing algorithm based on the Alternating Direction Method of Multipliers (ADMM) to solve this problem in an efficient way. We also discuss several extensions, including a streaming algorithm to update the model and incorporate new observations in real time. Finally, we evaluate our TVGL algorithm on both real and synthetic datasets, obtaining interpretable results and outperforming state-of-the-art baselines in terms of both accuracy and scalability

    ORB5: a global electromagnetic gyrokinetic code using the PIC approach in toroidal geometry

    Get PDF
    This paper presents the current state of the global gyrokinetic code ORB5 as an update of the previous reference [Jolliet et al., Comp. Phys. Commun. 177 409 (2007)]. The ORB5 code solves the electromagnetic Vlasov-Maxwell system of equations using a PIC scheme and also includes collisions and strong flows. The code assumes multiple gyrokinetic ion species at all wavelengths for the polarization density and drift-kinetic electrons. Variants of the physical model can be selected for electrons such as assuming an adiabatic response or a ``hybrid'' model in which passing electrons are assumed adiabatic and trapped electrons are drift-kinetic. A Fourier filter as well as various control variates and noise reduction techniques enable simulations with good signal-to-noise ratios at a limited numerical cost. They are completed with different momentum and zonal flow-conserving heat sources allowing for temperature-gradient and flux-driven simulations. The code, which runs on both CPUs and GPUs, is well benchmarked against other similar codes and analytical predictions, and shows good scalability up to thousands of nodes

    Targeting of Natural Killer Cells by Rabbit Antithymocyte Globulin and Campath-1H: Similar Effects Independent of Specificity

    Get PDF
    T cell depleting strategies are an integral part of immunosuppressive regimens widely used in the hematological and solid organ transplant setting. Although it is known to induce lymphocytopenia, little is known about the effects of the polyclonal rabbit antithymocyte globulin (rATG) or the monoclonal anti-CD52 antibody alemtuzumab on Natural Killer (NK) cells in detail. Here, we demonstrate that induction therapy with rATG following kidney/pancreas transplantation results in a rapid depletion of NK cells. Treatment of NK cells with rATG and alemtuzumab in vitro leads to impairment of cytotoxicity and induction of apoptosis even at a 10-fold lower concentration (0.1 µg/ml) compared with T and B cells. By generating Fc-parts of rATG and alemtuzumab we illustrate that their ligation to FcγRIII (CD16) is sufficient for the significant induction of degranulation, apoptosis and inflammatory cytokine release (FasL, TNFα and IFNγ) exclusively in CD3−CD56dim NK cells whereas application of rATG and alemtuzumab F(ab) fragments abolishes these effects. These findings are of general importance as our data suggest that NK cells are also mediators of the clinically relevant cytokine release syndrome and that their targeting by therapeutic antibodies should be considered as they are functionally relevant for the effective clearance of opportunistic viral infections and anti-tumor activity posttransplantation

    How university’s activities support the development of students’ entrepreneurial abilities: case of Slovenia and Croatia

    Get PDF
    The paper reports how the offered university activities support the development of students’ entrepreneurship abilities. Data were collected from 306 students from Slovenian and 609 students from Croatian universities. The study reduces the gap between theoretical researches about the academic entrepreneurship education and individual empirical studies about the student’s estimation of the offered academic activities for development of their entrepreneurial abilities. The empirical research revealed differences in Slovenian and Croatian students’ perception about (a) needed academic activities and (b) significance of the offered university activities, for the development of their entrepreneurial abilities. Additionally, the results reveal that the impact of students’ gender and study level on their perception about the importance of the offered academic activities is not significant for most of the considered activities. The main practical implication is focused on further improvement of universities’ entrepreneurship education programs through selection and utilization of activities which can fill in the recognized gaps between the students’ needed and the offered academic activities for the development of students’ entrepreneurial abilities

    Selective Alpha-Particle Mediated Depletion of Tumor Vasculature with Vascular Normalization

    Get PDF
    BACKGROUND: Abnormal regulation of angiogenesis in tumors results in the formation of vessels that are necessary for tumor growth, but compromised in structure and function. Abnormal tumor vasculature impairs oxygen and drug delivery and results in radiotherapy and chemotherapy resistance, respectively. Alpha particles are extraordinarily potent, short-ranged radiations with geometry uniquely suitable for selectively killing neovasculature. METHODOLOGY AND PRINCIPAL FINDINGS: Actinium-225 ((225)Ac)-E4G10, an alpha-emitting antibody construct reactive with the unengaged form of vascular endothelial cadherin, is capable of potent, selective killing of tumor neovascular endothelium and late endothelial progenitors in bone-marrow and blood. No specific normal-tissue uptake of E4G10 was seen by imaging or post-mortem biodistribution studies in mice. In a mouse-model of prostatic carcinoma, (225)Ac-E4G10 treatment resulted in inhibition of tumor growth, lower serum prostate specific antigen level and markedly prolonged survival, which was further enhanced by subsequent administration of paclitaxel. Immunohistochemistry revealed lower vessel density and enhanced tumor cell apoptosis in (225)Ac-E4G10 treated tumors. Additionally, the residual tumor vasculature appeared normalized as evident by enhanced pericyte coverage following (225)Ac-E4G10 therapy. However, no toxicity was observed in vascularized normal organs following (225)Ac-E4G10 therapy. CONCLUSIONS: The data suggest that alpha-particle immunotherapy to neovasculature, alone or in combination with sequential chemotherapy, is an effective approach to cancer therapy

    The effects of prolonged wear of textured shoe insoles on gait, foot sensation and proprioception in people with Multiple Sclerosis: protocol for a randomised controlled trial

    Get PDF
    Background: Many people with multiple sclerosis experience problems with walking, which can make daily activities difficult and often leads to falls. Foot sensation plays an important role in keeping the body balanced whilst walking; however, people with multiple sclerosis often have poor sensation on the soles of their feet. Wearing a specially designed shoe insole, which enhances plantar sensory information, could help people with multiple sclerosis to walk better. This study will explore whether long-term wear of a textured insole can improve walking in people with multiple sclerosis
    corecore