1,994 research outputs found

    Spin Accumulation in Diffusive Conductors with Rashba and Dresselhaus Spin-Orbit Interaction

    Get PDF
    We calculate the electrically induced spin accumulation in diffusive systems due to both Rashba (with strength α)\alpha) and Dresselhaus (with strength β)\beta) spin-orbit interaction. Using a diffusion equation approach we find that magnetoelectric effects disappear and that there is thus no spin accumulation when both interactions have the same strength, α=±β\alpha=\pm \beta. In thermodynamically large systems, the finite spin accumulation predicted by Chaplik, Entin and Magarill, [Physica E {\bf 13}, 744 (2002)] and by Trushin and Schliemann [Phys. Rev. B {\bf 75}, 155323 (2007)] is recovered an infinitesimally small distance away from the singular point α=±β\alpha=\pm \beta. We show however that the singularity is broadened and that the suppression of spin accumulation becomes physically relevant (i) in finite-sized systems of size LL, (ii) in the presence of a cubic Dresselhaus interaction of strength γ\gamma, or (iii) for finite frequency measurements. We obtain the parametric range over which the magnetoelectric effect is suppressed in these three instances as (i) ∣α∣−∣β∣≲1/mL|\alpha|-|\beta| \lesssim 1/mL, (ii)∣α∣−∣β∣≲γpF2|\alpha|-|\beta| \lesssim \gamma p_{\rm F}^2, and (iii) |\alpha|-|\beta| \lesssiM \sqrt{\omega/m p_{\rm F}\ell} with ℓ\ell the elastic mean free path and pFp_{\rm F} the Fermi momentum. We attribute the absence of spin accumulation close to α=±β\alpha=\pm \beta to the underlying U (1) symmetry. We illustrate and confirm our predictions numerically

    Extracting current-induced spins: spin boundary conditions at narrow Hall contacts

    Get PDF
    We consider the possibility to extract spins that are generated by an electric current in a two-dimensional electron gas with Rashba-Dresselhaus spin-orbit interaction (R2DEG) in the Hall geometry. To this end, we discuss boundary conditions for the spin accumulations between a spin-orbit coupled region and contact without spin-orbit coupling, i.e. a normal two-dimensional electron gas (2DEG). We demonstrate that in contrast to contacts that extend along the whole sample, a spin accumulation can diffuse into the normal region through finite contacts and detected by e.g. ferromagnets. For an impedance-matched narrow contact the spin accumulation in the 2DEG is equal to the current induced spin accumulation in the bulk of R2DEG up to a geometry-dependent numerical factor.Comment: 18 pages, 7 figures, submitted to NJP focus issue on Spintronic

    Oxalate-Induced Damage to Renal Tubular Cells

    Get PDF
    Our own studies and those of others have shown that the incidence of calcium oxalate stones and plaques is markedly increased by nephrotoxins. The possible role of oxalate as a nephrotoxin has not been fully appreciated. However, recent studies in experimental animals and in cultured cells support this possibility. The results of these studies led us to hypothesize that hyperoxaluria promotes stone formation in several ways: by providing a substrate for the formation of the most common form of renal stones, calcium oxalate stones, and by inducing damage to renal epithelial cells. Damaged cells in turn would produce an environment favorable for crystal retention and provide membranous debris that promotes crystal nucleation, aggregation and adherence. The present report summarizes evidence for oxalate nephrotoxicity and discusses the potential importance of oxalate toxicity in the pathogenesis of stone disease

    Baryon stopping and strange baryon/antibaryon production at SPS energies

    Full text link
    The amount of proton stopping in central Pb+Pb collisions from 20-160 AGeV as well as hyperon and antihyperon rapidity distributions are calculated within the UrQMD model in comparison to experimental data at 40, 80 and 160 AGeV taken recently from the NA49 collaboration. Furthermore, the amount of baryon stopping at 160 AGeV for Pb+Pb collisions is studied as a function of centrality in comparison to the NA49 data. We find that the strange baryon yield is reasonably described for central collisions, however, the rapidity distributions are somewhat more narrow than the data. Moreover, the experimental antihyperon rapidity distributions at 40, 80 and 160 AGeV are underestimated by up to factors of 3 - depending on the annihilation cross section employed - which might be addressed to missing multi-meson fusion channels in the UrQMD model.Comment: 18 pages, including 7 eps figures, to be published in Phys. Rev.

    Nonequilibrium models of relativistic heavy-ion collisions

    Get PDF
    To be published in J. Phys. G - Proceedings of SQM 2004 : We review the results from the various hydrodynamical and transport models on the collective flow observables from AGS to RHIC energies. A critical discussion of the present status of the CERN experiments on hadron collective flow is given. We emphasize the importance of the flow excitation function from 1 to 50 A.GeV: here the hydrodynamic model has predicted the collapse of the v2-flow ~ 10 A.GeV; at 40 A.GeV it has been recently observed by the NA49 collaboration. Since hadronic rescattering models predict much larger flow than observed at this energy we interpret this observation as evidence for a first order phase transition at high baryon density r b. Moreover, the connection of the elliptic flow v2 to jet suppression is examined. It is proven experimentally that the collective flow is not faked by minijet fragmentation. Additionally, detailed transport studies show that the away-side jet suppression can only partially (< 50%) be due to hadronic rescattering. Furthermore, the change in sign of v1, v2 closer to beam rapidity is related to the occurence of a high density first order phase transition in the RHIC data at 62.5, 130 and 200 A.GeV

    Parallelization of Kinetic Theory Simulations

    Full text link
    Numerical studies of shock waves in large scale systems via kinetic simulations with millions of particles are too computationally demanding to be processed in serial. In this work we focus on optimizing the parallel performance of a kinetic Monte Carlo code for astrophysical simulations such as core-collapse supernovae. Our goal is to attain a flexible program that scales well with the architecture of modern supercomputers. This approach requires a hybrid model of programming that combines a message passing interface (MPI) with a multithreading model (OpenMP) in C++. We report on our approach to implement the hybrid design into the kinetic code and show first results which demonstrate a significant gain in performance when many processors are applied.Comment: 10 pages, 3 figures, conference proceeding

    Zettawatt-Exawatt Lasers and Their Applications in Ultrastrong-Field Physics: High Energy Front

    Get PDF
    Since its birth, the laser has been extraordinarily effective in the study and applications of laser-matter interaction at the atomic and molecular level and in the nonlinear optics of the bound electron. In its early life, the laser was associated with the physics of electron volts and of the chemical bond. Over the past fifteen years, however, we have seen a surge in our ability to produce high intensities, five to six orders of magnitude higher than was possible before. At these intensities, particles, electrons and protons, acquire kinetic energy in the mega-electron-volt range through interaction with intense laser fields. This opens a new age for the laser, the age of nonlinear relativistic optics coupling even with nuclear physics. We suggest a path to reach an extremely high-intensity level 1026−2810^{26-28} W/cm2^2 in the coming decade, much beyond the current and near future intensity regime 102310^{23} W/cm2^2, taking advantage of the megajoule laser facilities. Such a laser at extreme high intensity could accelerate particles to frontiers of high energy, tera-electron-volt and peta-electron-volt, and would become a tool of fundamental physics encompassing particle physics, gravitational physics, nonlinear field theory, ultrahigh-pressure physics, astrophysics, and cosmology. We focus our attention on high-energy applications in particular and the possibility of merged reinforcement of high-energy physics and ultraintense laser.Comment: 25 pages. 1 figur

    Triple coalescence singularity in a dynamical atomic process

    Full text link
    We show that the high energy limit for the amplitude of the double electron capture to the bound state of the Coulomb field of a nucleus with emission of a single photon is determined by behavior of the wave function in the vicinity of the singular triple coalescence point.Comment: 3 page

    Does the Constitution Provide More Ballot Access Protection for Presidential Elections Than for U.S. House Elections?

    Get PDF
    Both the U.S. Constitution and The Federalist Papers suggest that voters ought to have more freedom to vote for the candidate of their choice for the U.S. House of Representatives than they do for the President or the U.S. Senate. Yet, strangely, for the last thirty-three years, the U.S. Supreme Court and lower courts have ruled that the Constitution gives voters more freedom to vote for the candidate of their choice in presidential elections than in congressional elections. Also, state legislatures, which have been writing ballot access laws since 1888, have passed laws that make it easier for minor-party and independent candidates to get on the ballot for President than for the U.S. House. As a result, voters in virtually every state invariably have far more choices on their general election ballots for the President than they do for the House. This Article argues that the right of a voter to vote for someone other than a Democrat or a Republican for the House is just as important as a voter’s right to do so for President, and that courts should grant more ballot access protection to minor-party and independent candidates for the House
    • …
    corecore